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Machine Learning for Per-Title Encoding

By Daniel Silhavy, Christopher Krauss, Anita Chen, Anh-Tu Nguyen, Christoph Miiller, Stefan Arbanowski,
Stephan Steglich, and Louay Bassbouss

Introdugao:

A motivagdo para escrever a introdugao dos Artigos da SMPTE, ndo € outra sendo convidar os leitores da SET a debrugarem-se sobre artigos
cientificos que estdo em sua maioria na vanguarda das tecnologias que estao sendo desenvolvidas. Dito isso, o convite para ler este presente artigo é
outro, é para trazer aos leitores um verdadeiro desafio e uma verdadeira “open mind”, ao se deparar com um artigo que une aprendizado de maquina e
o conceito de encoder por titulo (este introduzido pela NETFLIX em 2016) e, largamente, utilizado na industria de streaming desde ent&o.

N&o vou mentir, o artigo é desafiador no sentido de trazer uma nova sopa de letrinhas desconhecida do universo broadcast e muito utilizada no
mundo de Machine Learning e Data Miner, mas eu garanto que vocé saira transformado ao final de um artigo que se esforga em mostrar que sempre
é possivel fazer melhor. Em um mundo cada vez mais raso nos conteldos das redes sociais, este artigo € o mergulho no profundo conhecimento que
tanto faz falta. Boa Leitural!

Tom Jones Moreira

Introduction

n 2018, 58% of the global application internet
traffic stemmed from video streaming applica-
tions.! Streaming providers, such as Netflix
and YouTube, accounted for 15% and 11% of

Abstract

Video streaming content varies in terms of complexity and requires
title-specific encoding settings to achieve a certain visual quality.
Classic “one-size-fits-all” encoding ladders ignore video-specific
characteristics and apply the same encoding settings across all video

Siles. In the worst-case scenario, this
approach can lead to quality impair-
ments, encoding artifacts, or unnec-
essarily large media files. A per-title
encoding solution has the potential
to significantly decrease the storage
and delivery costs of video streams
while tmproving the perceptual
quality of the video. Conventional
per-title encoding solutions typically
require a large number of test encodes,
resulting i high computational
umes and costs. In this article, we
describe a solution that implements
the conventional per-title encoding
approach and uses its resulting data
Jfor machine learning-based improve-
ments. By applying supervised, mul-
tvariate regression algorithms like
random forest regression, multilayer
perceptron (MLP), and support vec-
tor regression, we can predict video
quality mewric (VMAF) values.
These video quality metric values are
the foundation for derfving the opti-
mal encoding ladder. As a result, the
test encodes are eliminated while pre-
serving the benefits of conventional
per-title encoding.

In 2016, Netflix introduced the concept
of per-title-encoding. Per-title
encoding is based on the fact that dif-
ferent types of video content require
different hitrates and encoding settings
to achieve a certain quality. In com-
parison to the conventional one-size-
fits-all encoding approach, in which
the same, predefined encoding ladder
is applied for all types of content, per-
title encoding has the potential to
significantly decrease the storage and
delivery costs of video streams. Easy-
to-encode videos such as animations
with high redundancy between frames
can be delivered with significantly
lower hitrates while ideally
maintaining or even improving the
perceptual quality. In addition, high
complexity content like action movies
or sport streams, which contain a lot of
movement, is streamed with lower
resolutions to avoid a lower quality of
experience for the viewer.

the web traffic, respectively.!
Netflix states that 70% of its
streams end up on connected
TVs, while phones, tablets, and
PCs account for the remain-
ing 30%.2 Taking a closer look
at connected TVs, more than
100 million 4K UHD TVs were
sold in 2018. High-dynamic
range (HDR) technology is
also becoming a factor in terms
of delivering high-quality video
content, which is embedded
in 60% of 4K UHD sets sold
in 2018. In addition, today’s
media streaming landscape is
dominated by adaptive stream-
ing technologies. The main
formats utilized in this con-
text are HT TP live streaming
(HLS) and dynamic adap-
tive streaming over HTTP
(MPEG-DASH).*

These trends resulted in
significant increases in cost in
terms of content storage and
delivery. Content providers are
required to support different
streaming formats (HLS and
DASH) across various platforms
(PCs, TVs, and mobile devices).

Keywords
Adaprive bitrate streaming, machine learning, per-title encoding,
video multi-method assessment fusion (VMAF)
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Consequently, video assets need to be encoded, stored,
and delivered in multiple qualities and formats. For exam-
ple, 4K and HDR technology require higher bitrates than
1080p or 720p content.

One way to tackle the high storage and delivery
costs is to utilize the latest video codecs, such as VP9,
AV1, or H.265. However, many legacy devices do not
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support these codecs, which is why H.264 is still the
dominant codec.*

In 2016, Netflix introduced the concept of per-title-
encoding.’ Per-title encoding is based on the fact that
different types of video content require different bitrates
and encoding settings to achieve a certain quality. In
comparison to the conventional one-size-fits-all encod-
ing approach, in which the same, predefined encoding
ladder is applied for all types of content, per-title encod-
ing has the potential to significantly decrease the storage
and delivery costs of video streams. Easy-to-encode vid-
eos such as animations with high redundancy between
frames can be delivered with significantly lower bitrates
while ideally maintaining or even improving the percep-
tual quality. In addition, high complexity content like
action movies or sport streams, which contain a lot of
movement, is streamed with lower resolutions to avoid a
lower quality of experience for the viewer.

Within the per-title-encoding process, the optimal
encoding settings of a video clip are identified in the
complexity analysis step. The most common approach
for determining the complexity of a video is to run
multiple test encodes. Based on these test encodes, a
content-specific bitrate/resolution ladder is derived and
applied to the entire video clip.

The major downside of this per-title-encoding
approach comes with the fact that it is computation-
ally very heavy and typically requires a large num-
ber of test encodes to derive a sufficient amount of
data. While such an approach is affordable for large
companies with ample financial and computational
resources, it becomes a downside for smaller com-
panies. The latter would need to carefully evaluate
whether the storage and delivery gains outweigh the
computational costs.

The purpose of our work is to avoid the cost-inten-
sive test encodes, while preserving the benefits of the
traditional per-title encoding approach. Rather than
performing test encodes, we provide a solution that
predicts the quality of a video based on a given set of
encoding settings by using machine learning techniques
such as neural networks and random forest. This way,
we can identify the optimal encoding ladder while
reducing processing time and costs needed for generat-
ing the test encodes.

De Cock et al.’ described a method for encoding per-title
video-on-demand (VoD) content. Based on a complex-
ity analysis, bitrate-resolution pairs positioned closely to
the convex hull are derived. They further improve this
approach by applying a chunk-based multipass encod-
ing process. As a result, title- and chunk-based encod-
ing approaches outperform conventional approaches in
terms of storage savings and video quality.

Takeuchi et al.® estimated bitrate-quality curves
using the just noticeable difference (JND) scale. Based
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on a feature set that includes the quantization param-
eter (QP), resolution, and video quality metrics such
as the peak-signal-to-noise ratio (PSNR), video multi-
method assessment fusion (VMAF), and structural
similarity index (8SIM), a support vector regression
(SVR) model is applied to estimate the JND scores.
Their results show that a JND-based encoding ladder
results in smaller storage sizes compared to conven-
tional encoding ladders.

Chen et al.” used a probability distribution of view-
port and bandwidth to minimize the streaming cost
while maintaining high streaming quality. Their A/B
testing results demonstrated bandwidth savings of 9.7%
without degrading the viewer’s quality of experience.

Rassool® examined the correlation between the sub-
jective mean opinion score and the computed VMAF
score. The results indicate that a VMAF score of 93
or higher is sufficient to produce a video that is either
indistinguishable from the original or with noticeable,
but not annoying distortion.

In general, the efficiency of a video codec is correlated
with the input video’s spatial and temporal redundancy.
A video that contains several movements and scene
changes is more difficult to encode than a video where
most parts are redundant or slowly changing over time.
We analyzed 60 movie trailers (with a duration of 3 min
and a resolution of 1080p) and plotted their resulting
bitrate/resolution value pairs in Fig. 1.

We found that animated trailers achieve Y-PSNR
values of 40—45 dB at bitrates ranging from 0.7 to
1.3 Mbit/s. More complex content like action trail-
ers require a much higher bitrate of 2.5-7.5 Mbit/s to
achieve similar dB values of 40-45. The conclusion
of this is obvious: diverse content types require differ-
ent bitrate settings to achieve a certain quality. There-
fore, applying a per-title encoding-ladder approach
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PSNR/bitrate pairs of 60 movie trailers at a resolution
of 1080p. The movies differ in terms of complexity and therefore
require different bitrates to achieve a certain quality.
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introduces major advantages compared to the conven-
tional approach of a “one-size-fits-all” encoding ladder.

In a per-title encoding solution, low-complexity con-
tent is encoded using significantly lower bitrates and
therefore requires less storage space while saving delivery
costs. In addition, low-complexity videos can be delivered
at a high resolution using a small bitrate. Consequently,
the perceived quality for the user is significantly increased
at lower bitrates. Note that, in an adaptive streaming solu-
tion, the delivered quality not only depends on the encod-
ing settings, but also on the media player’s adaptation
logic and client-side network conditions.

Table 1. Classic encoding ladder for content

with medium complexity.

. Bitrate

Resolution NS} VMAF PSNR (dB)
PSNR (dB) 320 30.87 29.8
384 x 288 400 40.2 30.4
512 x 384 750 55.8 31.62
640 x 480 1200 675 32.89
720 x 480 1900 72 334
1280 x 720 3000 86.2 37.43
1280 x 720 4500 88.1 38
1920 x 1080 6000 94.01 4312
1920 x 1080 7800 95.2 44.6

Table 2. Title-based encoding ladder for

content with medium complexity.

Resolution ::;::;; VMAF PSNR (dB)
640 x 480 320 495 31.4
1280 x 720 750 68.5 3.4
1280 x 720 1200 76.2 35.3
1280 x 720 1700 82.3 37.4
1920 x 1080 3000 88.5 39.3
1920 x 1080 5000 93.2 425
B BitraleVMAF graph
3 Fertme
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FIGURE 2. Resulting interpolated VMAF values from conventional
and per-title encoding ladders. The per-itle solution provides higher
quality scores by utilizing the ideal resolution for a given bitrate.

Classic Versus Per-Title Encoding Ladders

The aforementioned conclusions are illustrated in
Tables 1 and 2 and Fig. 2. A video with medium com-
plexity is encoded in H.264 using the conventional and
per-title encoding ladder methods. The VMAF met-
ric, also developed by Netflix, was employed to deter-
mine the quality of each encode. Compared to PSNR,
VMAF offers a better accuracy in measuring the
human perception of video quality and provides con-
sistent results across various content. The first thing to
notice is that the per-title ladder contains fewer bitrate/
resolution pairs than the conventional encoding lad-
der. This arises for various reasons: the lowest bitrate of
320 kbit/s delivers its optimal quality (highest VMAF
score) at a resolution of 480p. Hence, all lower resolu-
tions can be omitted. Additionally, JND plays a crucial
role when identifying optimal bitrate/resolution pairs.
JND is defined as the value by which something must
be changed for a difference to be noticeable. Since six
VMATF points equal to one JND, each encode should
be at least six VMAF points apart.® However, this is not
the case for the 3 and 4.5 Mbit/s representations or the
6 and 7.8 Mbit/s representations in the conventional
encoding ladder. As a result, the video is stored in quali-
ties that show no perceivable visual difference.

Furthermore, a VMAF score of 93 is sufficient in
producing a video that is either indistinguishable from
the original or with noticeable but not annoying distor-
tion.® While the title-based encoding ladder is capped at
approximately 93 VMAF points, the conventional lad-
der goes up to a score of 95.2.

Table 3 summarizes the results of both encoding
approaches for a streaming session with 20 Mbit/s available
on the client side. Compared to the conventional encoding
ladder approach, storage costs are 52% lower for per-title
solutions. Since the client consistently delivers the best
quality, the network traffic of the per-title variant is 36%

Table 3. Evaluation of a conventional- and
a per-title encoding ladder for a medium-
complexity content with a duration of 10

minutes. The per-title solution saves 52%

in storage costs and 36% in delivery costs
while delivering an average level of video
quality.

Average values
Bitrate PSNR Storage
VMAF
(kbit/s) (dB) (MB)
Conventional | 7648.18 94.92 44.37 1397.7
Per-Title 494175 93.06 42.41 675.2
Difference | »70643 | -1.86 | -1.96 675.2
Abs
E“fere"ce +36% 1% —4% +52%
erc
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Basic per-title encoding workflow.
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lower than that of the conventional method. Although the
conventional solution delivers higher VMAF and PSNR
values, the perceived quality for the viewer is similar due
to VMAF scores of 93+ in both cases. Thus, the loss in
VMAF is of no consequence; instead, the content provider
benefits from massive bitrate and network savings while
delivering optimal video quality.

The conventional workflow in determining a per-title
encoding ladder is depicted in Fig. 3. The source video,
target encoding settings (resolution, codec, and GOP
size), and a list of constant rate factor (CRF) values
serve as the input for multiple test encodes.

To determine the video quality of the resulting test
encodes, metrics such as PSNR, VMAF, and SSIM
are required. In the context of this article, we use the
default VM AF model, which predicts the quality of vid-
eos displayed on a 1080p HDTV in a living-room-like
environment. However, the previously described prin-
ciples are also valid for other video quality metrics. By
definition, the VMAF values can only be calculated on
videos that have the same resolution. Therefore, prior
to the actual VMAF calculation, the encoded videos are
upscaled to the resolution of the source video. To match
the VMAF model, we exclusively deployed 1080p
source videos in this article. All test encodes, except for
the 1080p outputs, are then upscaled to this resolution
using the bicubic upscaling filter. The bitrate/VMAF
values of the different resolutions form a boundary
called the convex hull. The per-title encoding ladder
is derived from the selection of bitrate/resolution pairs
positioned closest to the convex hull.!® An example of a
convex hull is depicted in Fig. 4.

An important aspect of this process is the fact that only
a limited number of data points can be generated from
the test encodes. Therefore, interpolation and extrapola-
tion are required to derive the bitrate/quality curves, as

Bitrate/VMAF Chart

Bitrate/VMAF graph
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VMAF/bitrate values and the resulting convex hull
derived from multiple test encodes of different resolutions.

shown in Fig. 4. Limiting the number of test encodes
may lead to an insufficient number of data points and a
distorted representation of the quality curves.

Since the complexity of a video may vary throughout
its duration, it is reasonable to extend per-title encoding
to scene-based encoding. Furthermore, the described
per-title encoding approach can be optimized by only
test-encoding the high-complexity parts of the source
video.!° Both optimizations are ongoing research and not
considered in this article. Instead, the focus is on improv-
ing the computational time of the brute-force approach
by applying machine learning models to predict the
VMAPF values, thus omitting the need for test encodes.

As described in the previous section, the optimal encod-
ing ladder can be derived by applying a large number of
test encodes (typically 7-12 per resolution), determin-
ing multiple bitrate/VMAF pairs for each resolution,
interpolating and extrapolating the data points, and
calculating the convex hull. An algorithm that predicts
the VMAF values and reduces the high number of test
encodes at the same time offers significant advantages
in terms of computational costs and scalability.

Prediction algorithms are typically based on machine
learning techniques. The task of predicting VMAF scores
based on predefined bitrates can be categorized as a super-
vised learning multivariate regression task (due to the use
of labeled reference data). Figure 5 depicts a high-level
overview of this approach. The training data consists of
test encodes, as well as corresponding video metadata and
additional information (e.g., number of scene changes).
The algorithm recognizes the dependencies between
these variables and the targeted quality metrics and
applies this knowledge to future videos. In the prediction
phase, only the video metadata and a predefined num-
ber of target bitrates are fed into the model. The model’s
outputs are the corresponding VMAF values, which can
then be used to derive the optimal encoding settings. To
support the video analysis and metadata extraction, fur-
ther machine learning algorithms (especially for image
processing) can be applied.




—_—
s SMPTE
_____

Training phase

Prediction phase

Input data /
Video meta data

Results of video analysis
- PSNR, VMAF
- Results of image recognition(Deep Learning)

Encoding settings
- e.g resolution, CRF, bitrate

N

Machine Learning
Model

\ Input data
Video meta data

N Encoding setting & video analysis
- e.g resolution, CRF, bitrate
- Results of image recognition

Predicted data

Results of video analysis
- PSNR, VMAF

P

Simplified workflow of machine learning-based per-title encoding.

To continuously refine and improve the process,
additional test encodes of the input video are carried
out in the background. As this is not a time-critical cal-
culation, a small, inexpensive machine can be used for
such purposes. The comparison between the machine
learning predicted VMAF values and the actual results
of the various encodes provides vital information about
the system’s accuracy.

The complete process of training and evaluating our
machine learning models is divided into five parts.

In the initial analyzation and preprocessing step, the
raw data is transformed into an understandable format.
This step plays a significant role in the overall workflow
due to incomplete and inconsistent data errors that are
usually discovered within raw data. In this step, two sets
of raw data are available (“video” and “encode™).

The “video” dataset provides general information and
metadata of our source videos, which are movie trailers
with a duration of 120-150 seconds. The information
included in the video dataset are duration, size, bitrate,
video codec, width, height, and framerate of each video.
The “encode” dataset specifies information about the
respective test encodes for each of the source videos.
Each source video in the reference dataset was encoded
with resolution, CRF, and codec settings, as depicted
in Table 4. In our tests, we exclusively used the H.264
codec. However, this approach is codec-agnostic and not
limited to H.264. Seven target resolutions with 12 CRF
values lead to a total of 84 test encodes for a single asset.

After data cleansing, the “encode” and “video” data-
sets were merged for further preprocessing, resulting in
a total of 11,011 video samples.

As part of the feature engineering step, we generated
two additional attributes through feature combination.
The “resolution” attribute was generated by combining
the width and height columns (e.g., 1920 x 1080). Each
combined pair was assigned with a numerical label and

labeled as “res_encode.” In addition, a new attribute,
“size_mean,” was computed by dividing the size of each
clip by the product of duration, width, and height. To
normalize the data, each frame rate was assigned with
a label “encode” (similar to the generated “resolution”
attribute) and renamed as “FPS_encode.” Lastly, the
“bitrate_video” attribute values were scaled for consis-
tency purposes by dividing all values by 10°.

Prior to applying the model, we computed the cor-
relation between each variable (CRF, res_encode,
bitrate_video, FPS_encode, and size_mean) and VMAF
to determine the independent and dependent variables
that will serve as input for the machine learning pipe-
line. As shown in Fig. 6, we found that the CRF, bitrate
video, resolution, and frame rate attributes showed the
highest correlation with VMAF, and therefore selected
them as our primary input.

To predict the VMAF scores for specific bitrates, we
focused on the following three supervised machine
learning models, which are further explained in the
following section: (1) SVR, (2) random forest, and (3)
multilayer perceptron (MLP). We fivefold cross-val-
idated the 11,011 sample clips to select the appropri-
ate machine learning models. After cross-validation,
we split the data between training and testing subsets
(80/20) and determined the root mean square error
(RMSE) and the R-squared values.

R-squared is a statistical measure of fit that indicates
how much variation of a dependent variable is defined by
the independent variable(s) in a regression model. It can
be calculated with the equations depicted below, with y;
being the actual value, j the mean of the observed data,
and f; as the predicted value for observation 7

1]
Explained Variation = Y (y; - £;)? o
1

n
Total Variation = Z( v - (2)
1

Explained Variation (3)
Total Variation

R*=1



The RMSE equation quantifies the extent to which
the predicted value for an observation matches its cor-
responding true value. The RMSE is calculated by

RMSE =13 ""(y; - )", @

Model Selection and Evaluation
The error values for each of the machine learning mod-
els are presented in Table 5.

The SVR model is a binary linear classifier. It uses
the same principles as the support vector machine
(SVM) method albeit with a few minor differences.
Most importantly, a margin of tolerance (¢) is fixed, to
fit the error within a certain threshold. Based on our
variables, the aim was to select the optimal non-negative
tuning parameter (C) within a range of 1-5. The other
hyperparameters were set to “default.” Results showed
that the optimal value predicted for C was 4, with an
R-squared value of 0.942, and an RMSE of 6.64.

The random forest regressor (RFR) is an ensemble
learning method that uses a series of decision trees.
It makes predictions by combining decisions from a
sequence of base models, which are independently
constructed using different subsamples of the avail-
able training data. This method was tested based on

Table 4. Settings for the test encodes of
a video. Seven target resolutions with

12 CRF values lead to a total of 84 test
encodes for a single asset.

Codec Resolutions Resolutions
1920 x 1080, 1280 x 720, 18,19, 20, 22, 25,
: 512 x 384, 382 x 288, ’ t,'>0 és T
320 x 240 !
Correlation between variables
1.00
vmaf : i 0.75
of 0.50
0.25
bitrate_video 1
: 0.00
res_encode _ 095
size_mean —0.50
FPS_encode 4 —075
s = & & £ o ~1.00
£ ° £ 2 § 3
g > 2 g ¢
& o 0N>| 2
£e % g
0 L

FIGURE 6. Correlation between the different variables. CRF, bitrate
video, resolution, and frame rate attributes show the highest
correlation with VMAF.
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hyperparameter tuning, in which our code would cease
to run once the optimal R-squared value was achieved.
The tree depth was set within a range of 2-20, and the
number of trees computed was 10, 50, and 100. We
found that the optimal tree depth and the number of
trees are 14 and 100, respectively, with an R-squared
value of 0.946. The RFR model had the lowest RMSE
with a value of 3.22.

MULP is a type of neural network that consists of three
main layers: (1) input, (2) hidden layer, and (3) output.
For this particular model, the hidden layer was used to
reduce the computational time. This hidden layer con-
sisted of a neuron interval of [3, 8, 12, 15, 20, 25, 30,
40, 45, 50]. The highest R-squared value of 0.937 was
obtained at hidden layer neuron 12 and had an RMSE
of 5.82.

Model Integration

The RFR produced the best results in terms of its
RMSE and R-squared values. Therefore, we added
the RFR model to our existing solution. Tables 6-8

Table 5. Evaluation of the different

machine learning models in terms of
R-squared values and RMSE.

Model RMSE R-squared
RFR 3.22 0.946
MLP 5.82 0.937
SVR 6.64 0.942

Table 6. Classic encoding ladder for a

movie trailer.

Resolution Bitrate (kbit/s) VMAF
320 x 240 320 60.3
384 x 288 400 67.8
384 x 288 750 78.9
640 x 480 1200 84.7
720 x 480 1900 88.9
1280 x 720 3000 92.2
1280 x 720 4500 94.1
1920 x 1080 6000 94.9
1920 x 1080 7800 96

Table 7. Per-title encoding ladder for a

movie trailer.

Resolution Bitrate (kbit/s) VMAF
720 x 480 320 71.0
720 x 480 620 80.2
1280 x 720 1220 86.5
1280 x 720 3220 93.1
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Table 8. Predicted per-title encoding ladder

for a movie trailer.

X Bitrate Predicted
Resolution (kbit/s) VMAF VMAF
640 x 480 320 70.8 704
1280 x 720 620 78.8 80.7
1280 x 720 870 83.3 86.8
1280 x 720 1820 89.3 93.0

Bitrate/VMAF graph
100
%0 /
v
Lo
: /) T,

Predictad

2k A Bk
Bitrale in Kbit/s

FIGURE 7. Evaluation of different encoding ladders. The per-title
encoding ladder derived from multiple test encodes produces
the best results in terms of bitrate/quality pairs. The predicted
ladder achieves similar results and outperforms the conventional
encoding ladder.

illustrate the resulting encoding ladders for a single
movie trailer derived from the conventional “one-
size-fits-all” encoding approach, the per-title encod-
ing approach (described in the previous section), and
a predicted-per-title encoding ladder using the RFR
model, respectively.

In the conventional encoding ladder, certain bitrate/
resolution pairs such as 720p@4.5 Mbit/s and 1080p@6
Mbit/s are less than six VMAF points (1 JND) apart.
Additionally, the conventional encoding ladder pro-
duces qualities with VMAF scores that are higher than
93. In comparison, the per-title and predicted-per-title
ladders stay below a VMAF score of 93 and resulted
in qualities with at least six VMAF points apart. The
predicted ladder peaks at a bitrate of 1820 kbit/s, which
results in a VMAF score of 89.3. The predicted VMAF
score was higher than the actual value, which is why
a real VMAF score of 93 was not obtained (refer to
Table 8).

Figure 7 interpolated VMAF dis-
tribution for different bitrates. The per-title and
predicted-per-title encoding ladders deliver better
video quality than the conventional encoding ladder by
assigning the optimal resolution for each of the target
bitrates.

shows the

Table 9 summarizes the results of all three encod-
ing approaches for a streaming session with 20 Mbit/s

Table 9. Evaluation of a conventional-, a
predicted per-title-, and a standard per-
title encoding ladder for a movie trailer.

The per-title solutions offer significant
storage and bandwidth savings while
delivering approximately the same quality
like the conventional encoding ladder.

Predicted-
lassi Per-Titl
Classic grrite Per-Title
Bitrate kbit/s 7618 3165 1775
Bitrate
Difference e e
VMAF 951 92.1 88.7
VMAF . .
Difference =ik =g/
Storage MB 461.5 93.5 63.1
1
Storage 79.7% 86.3%
Difference

available on the client side. In comparison to the con-
ventional encoding ladder, both per-title solutions save
storage costs, by 79.7% and 86.3%. In addition, the
average bitrate is up to 76.7% lower for the per-title
solutions. Although the conventional solution delivers
a higher VMAF value, the per-title encoding solutions
produce a similar quality of experience. The standard
per-title encoding approach delivers an average VMAF
score of 92.1, while the predicted-per-title encoding
ladder achieves 88.7 VMAF points.

Conclusion
In this article, we compared the conventional “one-
size-fits-all” to per-title encoding approaches. We illus-
trated how per-title solutions can significantly decrease
the storage and delivery costs of video streams while
maintaining and even improving the perceived quality
for the viewer at the same time. To avoid the neces-
sary, computationally heavy complexity analysis of a
standard per-title encoding approach, we proposed the
use of machine learning techniques. In this context, we
evaluated the use of different types of supervised mul-
tivariate regression algorithms to predict the required
quality metric scores. The RFR showed the best results
in terms of its RMSE and R-squared values. Integra-
tion of the RFR into our existing workflow showed
that title-specific encoding ladders based on VMAF
predictions can outperform conventional encoding lad-
ders. However, the accuracy of the prediction greatly
depends on the characteristics of the input video.
Thus, a large sample size and a provider or content-
specific customized model is required to achieve the
optimal results.

Future work includes further refinement of the
existing models by providing a larger set of reference



content. Moreover, our approach can be improved by
restricting the complexity analysis to only the complex
parts of a movie and applying the per-scene encoding
method. Image feature extraction and classification
(based on neural network algorithms) can also be uti-
lized to provide additional metadata for the machine
learning models.
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