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O SMPTE, como sempre, é muito competente em trazer temas relevantes. Neste artigo apresenta e explora 
os fundamentos da inteligência artificial (IA), incluindo o aprendizado de máquina (Machine Learning), 
aprendizado profundo e inteligência geral artificial. Procura fornecer uma visão geral das tecnologias  
e conceitos envolvidos, buscando demonstrar que existe uma exploração dos princípios e diferenciação 
entre máquina e aprendizado profundo.
O artigo, também, discute o impacto da tecnologia de IA na sociedade e os papéis emergentes atuais  
e potenciais da Inteligencia Artificial no espaço de mídia e entretenimento. Aproveitando-se aqui para  
brincar um pouco com o filme “O Exterminador do Futuro” (2003), então “Hasta la vista, baby!!”. 
Boa leitura a todos!

por Tom Jones Moreira

Abstract
This paper explores the fundamentals 

of artificial intelligence (AI), including 

machine learning, deep learning, and 

artificial general intelligence. It provides 

an overview of the technologies and 

concepts involved. There is an exploration 

of the principles of and differentiation 

between machine and deep learning. 

This paper also discusses the impact 

of AI technology on society and the 

current and potential emerging roles of 

AI in the media and entertainment space. 

Concepts such as general versus narrow 

intelligence, optimization space, and how 

simple narrow functions of AI differ from 

complex functions such as biological life 

and theoretical general AI are covered.
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Introduction

It helps to have clear distinctions of what is meant 
by the term artificial intelligence (AI). The phrase was 
first used by John McCarthy in the 1950s in a proposal 

for a seminar to study thesubject at Dartmouth College.1 

The idea behind making this distinction was that human 
intelligence was “real” and computer intelligence was 
artificial. For the purposes of this introduction, I want to 
make a distinction between three concepts of AI, namely, 

machine learning (ML), deep learning 
(DL), and general intelligence. All of these 
fall under the umbrella term of AI, and the 
basic principle is that these are synthetic 
or mathematically defined processes that 
mimic the biological decision-making 
process.
ML underpins most of what we currently 

think of as AI. ML will be described in 
much more detail later, but, for now, 
think of it as a network of decision-
making nodes that has been trained to 
perform a specific task. This might be 
a simple face-recognition algorithm or 
voicedetection tool. ML systems require 
a training framework that is typically 
orchestrated, so the ML will be trained 
to a point of usefulness, then deployed 

in that state. To improve it, more curated training will be 
required.
DL works by the same fundamentals as ML, but the 

networks are layered and, typically, a DL tool’s training 
is continuous. It usually happens on a much larger scale 
than that of ML. DL is often trained by massive “live” 
data sets generated by the users of the system being 
trained. DL systems are able to train themselves thanks 
to their layering, and, because they are exposed to very 
large training data sets, they are able to use statistical 
analysis of their own results versus an observed data set 
to determine if they are becoming more or less accurate. 
This is done without the need for a human to curate that 
data set, typically because it is based on humangenerated 
data such as social media where thousands or millions of 
humans are already doing the curation. This is common 
in applications such as search engines, tailored online 
advertising, or image-recognition systems.

The notion of AI, in

general, has raised

much concern in

some sectors of the

scientific and

technological

community as well

as political concerns

about the impact on

employment and

social cohesion.
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Artificial general intelligence (AGI) is effectively the 
“end-game” AI, which is a free-thinking intelligence that 
can solve a wide range of tasks and be able to specialize 
in any one of those to improve performance, much as a 
human would. A general AI may exhibit “consciousness,” 
but this is not a requirement of general AI. It is simply 
an emergent property, and one that is not sufficiently 
defined or understood at this point. AGIs are still the 
stuff of science fiction, and, while there is no practical 
reason why it cannot be achieved, it is generally accepted 
that, for now, it is something that will not happen until 
sometime in the very distant future.
The notion of AI, in general, has raised much concern 

in some sectors of the scientific and technological 
community as well as political concerns about the impact 
on employment and social cohesion. There are varying 
levels of belief that we need to establish rules and 
controls on the development of AI applications now to 
protect ourselves from harmful outcomes. The use of ML 
networks trained on data that is derived from human 
behaviors is naturally going to reflect the biases of the 
training data, and this is a valid ethical concern if the 
results of those AIs are to reinforce behaviors that are 
harmful to individuals or society as a whole. It is clear 
that, as AI touches more and more of our everyday lives, 
the impact of AI across society must be taken seriously.
Given the political interest, it is very likely that, for good 

or ill, regulation will follow. However, when considering 
AGI as a looming existential threat, it is worth noting 
that, although much thought was given to the notion 

of computers “thinking,” the progress toward AGI is 
considered by many to have been little or none. One 
of the generally accepted indicators of AGI, the “Turing 
Test,” has proven to be a controversial subject.
Many groups have claimed to have passed the test 

(whereby a computer is indistinguishable from a human 
when responding to questions from a suspicious judge); 
however, other experts claim that we are not even close 
to passing the test. Over the years since the test was 
devised by English mathematician Alan Turing,2 many 
attempts have been made; and, given the progress in 
computing power in the same period, it is arguable that 
we simply do not understand the foundational problem3 
as opposed to not having the required resource.

ML Versus DL
ML can simply be classified into two broad types of 

networks: those being regression oriented and those 
being classification oriented. Classification networks 
are often those we associate with DL as they perform 
best when presented with very large data sets and can 
improve with continuous feeding of new information.
As an example, a classification network might be 

trained on the difference between elephants, horses, 
dogs, and mice by feeding it images of such and telling 
the network which is which. Over time, it will decide 
where these different categories lie, bound them, and 
then make a decision when presented with new data as 
to which it fits best. However, it will only be able to make 
an identification based on its classes and data sets. So, 
once presented with an object outside of these, it will try 
to match them within the classes it has. The quality of 
training data and the determination of classes are critical 
to the usefulness of classification networks. Furthermore, 
all ML algorithm successfulness pivots around the quality 
of the training data.
It is clear from Fig. 1 that more data is better in terms 

of differentiating the classes; but, furthermore, it is in 
the interest of optimization to feed as much information 
as possible (including new classes) into the network. In 
the case of an application such as object recognition and 
tagging on a photo-sharing website, the platform owners 
would very likely wish to allow for significant optimization 
and differentiation of cat images. Luckily, in this particular 
scenario, there is an overwhelming abundance of training 
data.
Classification networks will typically require significant 

computation. The best of these for general purposes, 
such as search engines, necessarily have to live inside 
the massive data centers that are the preserve of tech 
giants such as Google, Amazon, Microsoft, etc., and their 
use relies on the connectivity of the user to the utility.
Regression networks are used to solve arbitrary 

problems using a set of inputs and weighted node-
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How do we define the line between ML and true AGI?

Figure 1. A high-level view of the CBC/Radio-Canada 

ecosystem.
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based networks that result in a single-output value. 
Typically, such regression networks are used en masse to 
produce useful results, each network tackling a smaller 
subcomponent of the problem at hand. As shown in  
Fig. 2, the network consists of a series of nodes network 
consists of a series of nodes, which typically make a 
binary decision regarding which node to step to next and 
passes on a value to that next node to test. Multiple 
nodes form decision trees, and, in most practical cases, 
these trees will be combined in what is known as a forest. 
The network may be designed such that a problem results 
in a new weighted version of the original value, which is 
passed back into the same network in an attempt to 
reinforce the result and hone in on a final useful decision.
In a more complex arrangement of regression networks, 

known as a jungle, branches from trees can merge 
and thus allow multiple paths to individual nodes and 
decisions can be based on non-linear functions.
The advantage in all cases is that each nodal decision 

typically requires very little computational effort, and so 
this type of ML can easily be deployed directly in local 
software or even embedded in device hardware.
A good example is simple face recognition in mobile 

devices that can be run locally on the chip that controls 
the camera, thus bringing the computation as close to 
point of use as possible. This can be used to determine 
the generally preferred point of focus and even detect the 
best moment to take the photo within a window after the 
trigger (i.e., when no one is blinking).
However, generic face recognition is not really enough 

for the modern consumer expectation, and such local 
ML cannot necessarily determine who or what is in the 

image. For this, it needs a DL network and a suitable 
database of faces with reference to personal information, 
most likely linked to social media, whereby it can now 
identify and tag the people and objects in the image with 
a high level of confidence (Fig. 3).

Practical Usage — Multimethod
As we have discussed, ML and DL are typically built 

around solving narrow problems. So, using them will 
typically be multimethod. The nature of the ML/DL in 
use will determine whether it can be local or remote. 
In many cases, use of ML in both consumer and 
professional applications is typically a hybrid of the two, 
with lightweight problem solving that occurs locally using 
ML, and heavier-weight problems being tackled in a 
cloudborne DL service that returns the results to the user 
seamlessly. This is well demonstrated in the widely used 
sphere of voice control. In the case of Amazon’s Alexa, 
the local process recognizes the “wake” word (which, 
incidentally, you can customize if you build your own Alexa 
using open source) and then the rest of the command 
is streamed to Amazon’s Alexa cloud service where their 
DL natural language processing kicks in and interprets 
the command. The natural language component of this 
engine is so well advanced that developers can simply 
build their applications around the written language and 
the back-end service does the rest. It works in most 
languages and is becoming capable with picking up 
even fine contextual distinctions between similar words 
and the intent implied in the question. This is a good 
example of an extremely lightweight local process that 
fronts an incredibly powerful back-end engine resulting 

Figure 2. Regression networks are formed of branching nodes organized into trees then simple forests or more complex jungles.
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in such a seamless AI experience that many users report 
considering their voice assistants to have personality  
—thus anthropomorphising the service as shown in  
Fig. 4.

General Versus Narrow Intelligence
Most of the biological lives we observe exist because
they have been successful at surviving in their 

environment and, in most cases, have done so through 
special skills. In simplistic terms, each organism, whether 
plant, animal, or microbe, has found its niche and adapted 
over time to be optimal (at least by comparison to the 
competition). As far back as the 1700s, Thomas Bayse,4 
a statistician, philosopher, and minister who studied at 
Edinburgh University, had made what were at the time 
controversial proposals that human decision-making was 
driven by a series of probabilistic calculations based 
on an experiential feedback loop, which is confidence 
based on strength of beliefs and theorems that reinforce 
themselves based on observation. This would lead to 
more complex emergent behavior; but, in principle, it 
was no different than the underlying decision-making of 

an animal or insect brain. This simplistic feedback loop 
underpins the principles of ML today.
ML works on the basis of training, testing, selection 

of the best performer, then training, testing, etc. One 
builds (or usually picks off the shelf ) basic networks 
(Fig. 5), gives them inputs, tweaks their behavior to 
give different outputs, chooses the one that is closest 
to the answer one is looking for, then iterates. These ML 
networks can be adversarial, i.e., they directly compete 
with one network creating synthesized data and another 
network discriminating between the real and generated 
training data. While the discriminator is winning (i.e., it 
can tell which is real and which is not) it feeds back 
to the generator such that the generator can change 
and improve. Similarly, when the discriminator loses, 
a feedback loop improves the discriminator. When the 
discriminator can no longer tell the difference between 
real and synthesized results to a significant percentage, 
the generator is practically deployable.
At face value, this compete-to-win process is very much 

like nature—“survival of the fittest” at work. However, we 
are attempting to build networks that are solving a narrow 
(usually single) problem. Over time and training, much 
like an organism going through generational adaptation, 
the ML network becomes more and more optimized for 
its task. 
While it is tempting to try and compare AI to biological 

intelligence, it is important to understand this in the 
context of what is known as “optimization space.” 
Optimization space is an imaginary and infinite space, 
where any process that could possibly take place occupies 
an area in that space. Processes that are similar or share 
components will overlap in the space but the narrower 
the process, the less likely it is to overlap with others. 

Figure 4. Voice assistants rely on the heavy lifting of a backend DL natural language processing service, combined with other

functional applications to provide a seamless voice control experience to users.

Figure 3. Face recognition in smartphones may use 

a combination of ML on the device and DL in the cloud.
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Complex multifaceted functions with similar component 
processes will have large overlaps and can typically 
be grouped, whereas simple and isolated (e.g., single 
purpose) processes are disconnected and usually very 
distant from all other processes in this imaginary space. 
An arbitrarily assigned space example is shown in Fig. 6.
If we consider a few simple organisms to fit broadly 

within one space, which we will call the biological 
optimization space, they will have many goals that 
overlap (movement, reproduction, growth, respiration, 
nutrition, etc.) and many that do not. For instance, a bird 
that needs to migrate for survival or a human who needs 
to migrate for a new acting gig in Los Angeles are both 
moving to warmer climates but for very different reasons.
Now, imagine a super AI (not AGI, but pretty awesome 

at tackling abstract problems nonetheless) that is given 
the task of moving itself from Nova Scotia to California as 
efficiently as possible. It might try to figure out ways to 
transport itself on hardware from A to B using air freight 
or rail, but most likely (assuming it lives in a massive data 
center) it might simply take over the available bandwidth 
from A to B in order to shift its bits to another suitably 
large data center. At face value, it is pretty obvious. In the 
process, however, the lost bandwidth caused emergency 
service communications to fail. It is possible that the 
target data center had storage or computation capacity 
overtaken that had critical infrastructure relying upon it. 
Because this particular AI’s optimization is simple and 
abstract, it will not consider wider impacts of its actions.
Here is where AI diverges from anything approaching 

“biological intelligence.” The context and understanding 
of the space we occupy drives us to consider it in every 
move we make. Other organisms may not “consider” 

those factors, but, as a collective ecosystem, Earth 
has had hundreds of millions of years of optimization 
opportunity for these billions and trillions of organisms 
to learn to work in symbiosis. Any AI we manufacture 
does not have any real link to that environment, and, 
in theory, it could over time exist in independence from 
it and us. The optimization space it occupies will never 
really need to be shared with ours, and thus its actions 
will not necessarily be compatible with our requirements 
in the context of our optimization space.
This model raises many questions about AI. In 

particular, do new arbitrary processes move toward the 
space we occupy, or do they move away from our goals? 
Moving into our optimization space means they become 
necessary components, i.e., we depend on them for life. 
Moving away means the opposite; they are not critical to 
us, and most arbitrary processes right now would be said 
to occupy the regions outside our optimization space. 
Not being a critical component inside our space does 
not preclude them from posing an existential threat, but 
it further detaches them from our understanding and 
influence. The big question is, where does an AGI fit into 
this space?
A simple example is the recent success of the Alpha 

GO from the Google Deep Mind team in London. They 
developed an AI capable of beating the worlds’ best 
human players at the board game “Go.” Go is considered 
a far more difficult problem for computers to solve than 
chess because it is mathematically more complex and thus 
precludes “brute force” AI techniques such as regression 
tree traversal to solve for multiple outcomes and select 
the best one in a reasonable amount of time. Alpha Go 
uses DL to accelerate its “abilities” and find the best 

Figure 5. Generative adversarial networks compete to improve.
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moves to win. It even started to invent strategies never 
seen before, thus surpassing its human counterparts. 
However, Go is a board game that most humans have 
never played and never will. It does not occupy any 
part of our optimization space. The Alpha Go program is 
clearly more optimized than the human equivalent, but 
ask it to make you a cup of tea and it will struggle. That 
optimization lives somewhere else, completely occupied 
by simple machines with no AI involved at all (except 
maybe voice controlled kettles).
Therefore, we can build seemingly incredibly powerful 

AIs, but they are for very narrow purposes and highly 
detached from each other. It is possible that AGI is 
emergent from the eventual coalescing of these separate 
optimizations, but it seems that AIs to start systematically 
tackling arbitrary problems would need to be built first to 
find all the optimizations. This is a popular view among 
AI theorists, that over time AGI is emergent from simpler 
AIs with some general capabilities but not individually 
powerful enough to be considered AGI themselves.

Marvin, HAL, and the Terminator
AI in fiction is dramatically characterized as anything 

from annoying to apocalyptic. While the science fiction 
notions of how an AGI might decide to behave typically 
result in some sort of negative outcome (they are rarely 
portrayed as the hero or heroine), the outcomes of much 
simpler (nongeneral) AIs could pose just as much risk to 

humans and life in general. We are already surrounded 
by everyday objects and tools that are quite capable of 
harming or killing people by accident or by design and do 
so with great frequency at the hands of humans. Applying 
AI instead to those things (e.g., autonomous vehicles) 
clearly requires a significant amount of research and 
practical regulation to prevent unnecessary accidents. The 
case of driverless cars is particularly prescient because it 
is on the immediate horizon, and, as proponents point 
out, humans are not particularly good at that job of 
driving, with vehicle-caused injuries and deaths currently 
numbering in the thousands per day. In principle, properly 
trained and capable machines should be better at this 
task than people and dramatically reduce the number of 
road deaths and injuries. This does not necessarily reduce 
the number to zero, and it will be little consolation to 
those who still fall victim that the statistics had improved. 
Despite this, it ought to be clear that the application is 
benign and that overall benefits are worth the inevitable 
outlying incidents with negative outcomes. The question 
of responsibility and “choice” here is particularly difficult 
since an algorithm is at the heart of “decisions.”
The challenge lies in the understanding of how the AI 

will behave, and, given the astronomically large number 
of scenarios any AI may have to deal with, we cannot 
know in advance the outcome for all of them.
We can model a specific scenario and see precisely 

how the AI network performed for that exact task, but 

Figure 6. Optimization space is an infinite imaginary field in which every process has an area. Complex multiprocess 

functions such as biological life will occupy a very different space to an arbitrary simple function, such as collecting paperclips.



a subtle change to a single variable may have a vastly 
different outcome. If that outcome is not limited, then it 
could go well outside the bounds of acceptability for any 
particular task. So the question of human trust, control, 
and common sense comes into play.
For the media industry, the trust level in AIs will define 

its use in the near term. The final decision-making 
process will have to allow for some level of intervention 
and, in most cases in the creative process, will probably 
require it. A current example is the task of censorship 
editing. AIs are already in use that identify (and could 
potentially remove or obscure) nudity for the purposes 
of compliance and censor cuts.i This dramatically reduces 
the time required to modify these versions. It remains 
unlikely, however, that the task will be wholly turned 
over to the AI to complete and these versions will ship 
“unwatched.”
Another example is automatic rotoscoping of prerelease 

content,ii where the idea is to obscure all but the 
characters’ faces so that dubbing voice artists can see 
the performance of the character they are voicing but not 
have a useful copy of the content for piracy. An example 
of before and after such a process is shown in Fig. 7.
This is traditionally a manual process because it requires 

decisions to be made about what does and does not get 
shown. Therefore, a simple AI can do this as long as it 
is only looking for faces, but what if it is looking for a 
talking car or robotic dog?
So now the AIs need to have more contextual 

understanding, but that can then extend to showing the 
whole body of a character for a particular shot because 
their physicality is informing the artist of how they should 
voice that line of dialog. The trust level to just let an AI 
do it unchecked is not there yet. However, this is a fairly 
mundane and time-consuming process for the operator, 
so there is impetus to off load this to an automated 
process. Furthermore, the impact of the AI getting it 

wrong is very low; so it is likely that an application like 
this could be trusted to be left to the AI.
This final human control is an important point and 

will likely be a major driver in the practical use of AI in 
the media industry for the foreseeable future. It is very 
unlikely that we will trust AI 100% to perform any creative 
task without the ability to influence or stop it altogether. 
However, as applications are identified that run low risk, 
and as commercial pressures on time and cost come to 
bear, it is increasingly the case that we will start to turn 
some or all of certain processes over to AI. AI’s part in the 
media industry is only just beginning, and, as this edition 
of the SMPTE Journal will explore, AIs potential for the 
media industry is huge.
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Figure 7. Identification, tracking, and masking of faces using AI in a commercial application.

iiSundog Media Toolkit DubSafe tool uses multimethod ML tools to pick out

faces during sections of dialog and track them through shots to create dynamic

masking of the content for security.

iGrayMeta Curio platform uses multiple AI services to provide compliance

detection including nudity, sex, violence, gore, and profanity.


