
Abstract—Video encoding services are known to be

computationally intensive. In a software environment, it is

desirable to be able to adapt to the available computing

resources. Therefore, modern live video encoders have the

“elasticity” feature. That is, their algorithmic complexity adapts

automatically to the number and capabilities of available CPU

cores. In other words, the more CPU are allocated to a live video

encoder, the higher the encoding performance. Until recently,

the elasticity feature was used as an ad-hoc adaptation to

uncontrollably varying conditions. In this paper, mechanisms

allowing to take control of the computing resource are

presented. Two real-time resource optimizations strategies are

then proposed. The first one is based on video content

complexity and manages the video head-end costs, while the

second relates to audience measurements and targets network

bandwidth usage optimization.

Index Terms—Video compression, live encoding, Kubernetes,

orchestration

I. INTRODUCTION

In the field of video encoding, microservices architecture is

becoming more and more beneficial over monolithic

applications. The concept of microservices [1][2] allows a

dramatic reduction of the design and implementation cycles

durations and simplifies support and update of the

applications. The virtualization concept on the other hand,

allows being highly flexible and independent of the hardware.

In the case of video compression, where performance is

critical, the optimal granularity of the microservices must be

optimized under constraints of real-time, low-latency,

efficient data flow and availability. Practically, microservices

must be stored in containers. The high number of containers

requires orchestration. Among many available solutions

[4][5][6], the work presented in this paper relies on Docker

[7] for containerization and Kubernetes [5] for orchestration.

The video encoding solution considered in this paper is

composed of several independent services which are thus

managed by Kubernetes. However, the performance of a

practical implementation of a video encoder is a trade-off

between bitrate, perceived video quality, computing resource

and architecture design. Kubernetes allows controlling the

number of resources dedicated to each microservice. Thus, in

the video compression context, one may consider allocating

the resource non uniformly to different video services,

depending on the desired trade-off for each video service.

This must be carried out explicitly by the user though, since

Kubernetes, as an orchestrator, is blind to the specifics of

each application.

The proposed allocation solution will leverage previously

introduced method [8] to seamlessly update the CPU for a

service running on Kubernetes without service interruption.

A full experimental system is demonstrated, applying the

proposed dynamic resource allocation to a set of live encoders

deployed in a Kubernetes environment. The rest of this paper

is organized as follows: first, some elements of context and

preliminary results are provided. Then two versions of the

custom-orchestrator are detailed, complexity-based and

audience-based. Finally experimental results are provided for

each mode before conclusion.

II. CONTEXT, ELASTICITY AND CPU ALLOCATION

A given video encoder implementation can provide several

trade-offs between resource consumption and video quality.

This is the case, for example, with the High Efficiency Video

Coding (HEVC) implementation x265 [9]. The tuning

parameter (-preset) allows choosing a speed/coding

performance trade-off in a range of predetermined settings. In

this paper, the considered encoder adapts automatically to the

available computing resources. That is, given the real-time

constraint, the encoder chooses its parameters automatically

depending on the platform capacity and current load. This

tuning is updated dynamically. If the overall load of the

platform changes, the tuning changes accordingly. The more

computing resources available, the better the delivered

coding efficiency. This concept is called video encoder

elasticity [14].

As an illustration of the elasticity concept, example

experiments have been conducted using the HEVC codec in

its default configuration. All the considered video sequences

have a 1080p (high definition, HD) resolution. Fig. 1 presents

rate-distortion curves [12] for several encodings of the same

12 minutes movie extract. Each encoding is performed in

real-time, with a fixed number of central processing unit

(CPU) cores allocated to the corresponding microservice. In

the video compression context, a rate-distortion curve

illustrates the trade-off between bitrate and distortion (or

quality) achieved by an encoder implementation or

configuration. A configuration is found to be better than a

reference configuration if its rate-distortion curve is above the

reference rate-distortion curve. That is, for a given distortion,

the bitrate is found to be lower, or conversely, for a given

bitrate, the quality is found to be higher. The experimental

observations confirm that the encoder adapts to the available

Abdelmajid Moussaoui, Thomas Guionnet, and Mickaël Raulet.

Ateme {a.moussaoui, t.guionnet, m.raulet}@ateme.com

Audience and complexity aware live video

encoders orchestration

ACADÊMICO CALL FOR PAPERS – SESSÃO 2
 Audience and complexity aware live video encoders orchestration

162

SET EXPO PROCEEDINGS – SETEP v. 8
© 2022 SET - Brazilian Society of Television Engineering / ISSN (Print): 2447-0481/ ISSN (Online): 2447-049X

Available at: https://www.set.org.br/setep doi: 10.18580/setep.2022.47.3. Web Link: https://dx.doi.org/10.18580/setep.2022.47.3
162

computing resource. Indeed, all the curves of Fig. 1 have

been generated with strictly the same configuration, except

for the number of CPU allocated. Thus, the rate-distortion

performance improves as the CPU number increases.

In a second experiment, the encodings of two different 12

minutes movie extracts are considered. The two contents have

the same resolution and are both encoded using HEVC. An

arbitrary fixed budget of 20 CPU cores is allocated to be

shared between the two encoders. One must note that this

fixed CPU budget is shared in a controlled manner between

the two channels. A first part is allocated exclusively to the

first channel, and the remaining part is allocated exclusively

to the second channel. One may split it even and allocate 10

CPU cores to each channel or decide to allocate more CPU

cores to one of the channels. The goal of this experiment was

to find the optimal repartition of these 20 CPU cores between

the two encoders, which minimizes the distortion for a given

bitrate. The experiment showed that the allocation that

maximizes the overall quality is not uniform, as illustrated on

Fig. 2.

Both encoders have the same configuration, the difference

is the encoded content itself. The channel 2 contains more

complex content compared to channel 1. A video sequence is

said to be more complex if it contains more information, like

more motion or image texture, than the other sequence. The

encoder must make more effort on a complex sequence to

achieve the same coding efficiency as on a simple sequence.

III. COMPLEXITY BASED ORCHESTRATION

A. Dynamic CPU allocation

The second experiment (Fig. 2) showed that for two

channels with the same configuration, the allocation that

minimized the distortion – thus maximizes the video quality

– is not a uniform allocation, but rather a CPU cores

distribution where the channel with high content complexity

needs to be allocated more than the lower content complexity

channel. Additionally, it is well known that the characteristics

of contents are not constant in time. This is especially true for

a 24/7 live channel. With a limited number of computational

resources, dynamic resource allocation can improve the

overall compression efficiency of a set of live channels.

The encoders run as part of a micro-services application in

a Kubernetes cluster. All encoding services are running in

Pods, the smallest Kubernetes manageable unit. A Pod

contains one or several containers, and the hardware

resources (CPU, memory, …) are managed at the container

level. The native and supported way for Kubernetes to update

the resources allocated to a container in a given Pod is to stop

and restart the Pod with the desired resources allocation.

For a live video encoder, the reboot of the Pod even for

milliseconds will lead to the loss of multiple video frames.

However, service interruption of a live service is not

acceptable. In a previous work [8] authors proposed a method

for dynamic resource allocation for Kubernetes Pods with

zero downtime.

The allocation system relies on an interaction between

operating system features and Kubernetes device plugin

feature [11]. It consists in updating the number of resources

advertised to the Kubernetes scheduler and changing the

current allocation using the Linux system tools in a way that

is transparent to Kubernetes.

Fig. 3 present the interaction between Kubernetes cluster

and the dynamic allocation service (PodHandler). The

PodHandler gets the new allocation computed by the

orchestrator, then interacts with the device plugin to update

the number of custom resources advertised to Kubernetes

Scheduler, the next step is to update the Pod’s Cgroups [10]

Completely Fair Scheduler Quota (CFS Quota) that controls

the Pod’s CPU usage limit. Linux tool taskset is used to

change CPU affinity to meet the new allocation. Finally, the

resource state is updated for every server in a database

managed by the Resource Allocation Daemon service.

Fig. 1: Rate-Distortion curves for different CPU core allocations.

Fig. 2: Sum of Mean Squared Errors (MSE) for different CPU

allocations among two video channels.

Fig. 3: Resources updating and orchestration process.

ACADÊMICO CALL FOR PAPERS – SESSÃO 2
 Audience and complexity aware live video encoders orchestration

163

SET EXPO PROCEEDINGS – SETEP v. 8
© 2022 SET - Brazilian Society of Television Engineering / ISSN (Print): 2447-0481/ ISSN (Online): 2447-049X

Available at: https://www.set.org.br/setep doi: 10.18580/setep.2022.47.3. Web Link: https://dx.doi.org/10.18580/setep.2022.47.3

B. Complexity based orchestration

The orchestrator computes optimal CPU resource allocation

and relies on the PodHandler to apply this allocation. The

orchestration algorithm is organized in two steps:

- Predicting the bitrate gain with the help of a machine

learning algorithm

- Computing the optimal allocation that minimizes the

function (1), based on the bitrate gain predictions:

 𝑱 = ∑ 𝒃𝒊
𝑵
𝒊=𝟏 + 𝝀 ∗ 𝒅𝒊 , (1)

where, 𝑵 is the number of channels 𝒃𝒊 is the bitrate of the

channel 𝒊, 𝒅𝒊 is its video distortion and 𝝀 is the Lagrange

multiplier.

For the first step, the orchestrator uses a trained machine

learning model that predicts for every channel the possible

gain of a given CPU allocation with respect to a reference

allocation, the model takes as input several parameters:

- Video Codec (HEVC, AVC, AV1…)

- Channel configuration (Frame rate, resolution, bit

depth…)

- Video quality (PSNR)

- Number of CPU cores

- Channel’s complexity estimation

A K-Neighbors Regressor (KNR) [18] algorithm is used

for this task. The dataset is composed of various encodings

with different configuration and content complexity. Fig. 4

illustrates the predictions made by the model for two different

video sequences. The first sequence exhibits low complexity

content and the second one high complexity. Both contents

are encoded by an HEVC encoder and have the same

configuration (25 fps, 1080p resolution, 8-bit depth…). The

graphs in Fig. 4 show the KNR model estimation of the

bitrate gain for a given CPU allocation with respect to the

minimum allocation (5 CPU cores here), the video quality

remaining constant. The complex channel takes better

advantage of any additional CPU core. Additionally, from a

CPU cores number threshold, additional CPU core will no

longer provide bitrates reduction. This threshold is much

higher for the high complexity channel than for the low

complexity channel. Finally, the reliability of the prediction

is assessed by comparing it to the actual encoder behavior.

In a second step, the result of gain estimation is used to

compute the optimal allocation that will minimize the cost

function. The algorithm proposed is a greedy algorithm, and

since all curves predicted by the KNR model are strictly

decreasing, it is guaranteed that it will return the optimal

solution.

Let N be the number of channels in a given server,

minAllocation returns the minimum allocation possible for a

video channel to operate normally and M is the disputed CPU

cores given in function (2):

𝑀 = 𝑡𝑜𝑡𝑎𝑙𝐶𝑃𝑈𝑠 − ∑ 𝑚𝑖𝑛𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖
𝑁
𝑖=1 (2)

Since the model returns the bitrate gain for a constant

PSNR, the distortion term in the algorithm is also constant,

thus, the Lagrange multiplier can be put to 0.

The algorithm provided on Fig. 5 will return the allocation

that minimizes the total bitrate of all channels while keeping

the same video quality. Note that the number of allocated

CPU cores to the channels is an integer number, in order to

ensure optimal usage of threading and CPU cache memory.

After receiving the number of cores, the PodHandler will take

care of finding the best CPU affinity considering the NUMA

architecture [13] of the physical processor.

C. Complexity-based orchestration experimental results

1) Bitrate minimization

Many tests have been conducted with various

configurations and repeated to validate the stability of the

Fig. 4: Bitrate gain predicted by KNR model for, (a) low

complexity channel, (b) high complexity channel.

Allocation Algorithm

Initialize with the minimum allocation

Output: allocation

For channel = 1 to N do:

 allocation[channel] <-- minAllocation[config]

End

For cpu <-- 1 to M do:

 For channel = 1 to N do:

 CurrentAlloc <-- allocation[channel]

 𝑔𝑎𝑖𝑛[𝑐ℎ𝑎𝑛𝑛𝑒𝑙] < − − 𝑲𝑵𝑹(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑙𝑙𝑜𝑐,
𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦, 𝑞𝑢𝑎𝑙𝑖𝑡𝑦, 𝑐𝑜𝑛𝑓𝑖𝑔) + 𝜆 ∗ 𝑑𝑖
 End

ChosenChannel <-- argmax(gain)

allocation[ChosenChannel] = allocation[ChosenChannel]

+1

End

Fig. 5: Allocation algorithm for complexity-based orchestration.

ACADÊMICO CALL FOR PAPERS – SESSÃO 2
 Audience and complexity aware live video encoders orchestration

164

SET EXPO PROCEEDINGS – SETEP v. 8
© 2022 SET - Brazilian Society of Television Engineering / ISSN (Print): 2447-0481/ ISSN (Online): 2447-049X

Available at: https://www.set.org.br/setep doi: 10.18580/setep.2022.47.3. Web Link: https://dx.doi.org/10.18580/setep.2022.47.3

system running live. From a large set of varied sequences,

several subsets have been selected to perform our

experiments. Little variation in the results has been observed,

as long as the subsets are heterogeneous. In a sense, the

behavior of the system is comparable to a statistical

multiplexer (statmux), as an allocation for a set of sequences

having all the same characteristics brings little to no gain. The

following example has been kept as a meaningful

representative of these experiments.

Four 1080p channels of 5 minutes duration, encoded using

an HEVC encoder, configured in constant quality mode and

targeting the same video quality. This mode delivers variable

bitrate (VBR) streams. Therefore, the performance at a given

quality is measured by the bitrate. The better the allocation,

the lower the bitrate. An arbitrary number of 28 CPU cores is

available to be shared between the 4 channels. These channels

have all different content complexity levels.

 Two allocation scenarios are run and compared. The first is

a uniform allocation, where every channel gets a fixed 7 CPU

cores no matter its content. The second is dynamic allocation;

in this mode, the orchestrator will compute the optimal

allocation periodically based on the content complexity.

Fig. 6 illustrates the changes of the allocation over time

for the four channels depending on their respective

complexities. As one may expect, the sports content is more

complex than the others, hence a larger allocation has been

granted to it almost all the time.

TABLE I: BDRATE GAINS COMPARED TO UNIFORM ALLOCATION.

Movie-1 Movie-2 Sports Animation Mean

BDRate 2.93% 2.63% -8.85% 1.23% -0.51%

For the proposed combination of sequence and settings,

rate distortion curves are derived from which Bjøntegaard

Delta Rates (BDRates) [3] can be computed. Table I presents

the BDRate gains relative to the uniform allocation.

Negatives values indicate a gain (bitrate reduction), and

positives values a loss. The first observation is that resource

augmentation for one channel implies resource reduction for

at least one other channel, leading to BDRate losses. Still,

with the proposed dynamic allocation, an overall BDRate

gain is achievable.

However, the BDRate is a relative performance metric

especially when comparing sequences with different content

types. The actual bitrates are provided in Table . The overall

performance is measured by the sum of the bitrates for the 4

channels, with a lower total bitrate indicating better

performance.

TABLE II: BITRATES IN MBPS FOR ALL RUNS AT THE SAME QUALITY.

Uniform Dynamic Gain

Movie-1 0.686 0.709 3.35%

Movie-2 0.245 0.250 2.04%

Sports 4.015 3.469 - 13.6%

Animation 0.195 0.198 1.54%

Total 5.141 4.626 - 10%

Compared to uniform allocation, dynamic allocation

reduces the bitrate by 10%. For the highest bitrate sequence,

Sports, the required bitrate is reduced by 13.6% thanks to

dynamic allocation, which represents more than 0.5 Mbps on

a very demanding content. The absolute bitrate increase on

the other channels is comparatively negligible. Gaining more

than 0.5 Mbps on a channel is an opportunity to reach more

users with the full resolution quality. For the content provider,

it also translates into cost control. With uniform allocation,

more CPU cores would be necessary to reach the same bitrate

as the proposed solution, hence a higher cost. In a summary,

this experiment showed 10% overall bitrate gain in dynamic

allocation mode while using the same CPU budget and

achieving the same video quality.

2) CPU Usage Optimization

In the previous experiment the goal was to allocate the

available CPU cores in order to reduce the required bitrate at

a given video quality. In a case where the aim is to minimize

the encoding cost, i.e., to use less CPU cores (e.g., when using

public cloud) or increase the channels density (have more

channels in the same server), dynamic allocation allows

reducing the total CPU cores required for a set of channels

compared to the uniform allocation mode while achieving the

same bitrate for the same video quality.

TABLE III: BITRATES (MBPS) FOR UNIFORM AND DYNAMIC ALLOCATION

WITH DIFFERENT CPU BUDGET.

Uniform 44

CPU Cores

Dynamic 28

CPU Cores

Gain

Movie-1 0.679 0.709 4.42%

Movie-2 0.246 0.250 1.63%

Sports 3.546 3.469 -2.17%

Animation 0.2 0.198 -1%

Total 4.671 4.626 -0.96%

The experiment setup is the same as the previous one, four

live HD channels are encoded with an HEVC encoder in

constant quality mode. For the uniform allocation, 44 CPU

cores are allocated to the channels (11 cores for each). The

Table III shows the bitrates achieved for a given video quality

in the uniform and dynamic CPU allocation modes. For the

dynamic allocation, a total budget of 28 CPU cores is

allocated which is 36% less than the 40 CPU cores of the

uniform allocation. Yet, a gain of 0,96% of required bitrate is

achieved compared to the uniform allocation mode. In

Fig. 6: Dynamic allocation of 28 CPU cores among 4 channels

encodings.

ACADÊMICO CALL FOR PAPERS – SESSÃO 2
 Audience and complexity aware live video encoders orchestration

165

SET EXPO PROCEEDINGS – SETEP v. 8
© 2022 SET - Brazilian Society of Television Engineering / ISSN (Print): 2447-0481/ ISSN (Online): 2447-049X

Available at: https://www.set.org.br/setep doi: 10.18580/setep.2022.47.3. Web Link: https://dx.doi.org/10.18580/setep.2022.47.3

summary, this experiment shows that one can save up to 36%

of CPU cores when applying a content complexity aware

dynamic allocation on a set of live channels in a public or

private cloud.

IV. AUDIENCE AND COMPLEXITY BASED ORCHESTRATION

The complexity-based allocation method optimizes the

video encoding performance in the video head-end. The result

was a lower overall bitrate compared to a uniform allocation.

However, some channels have seen their required bitrates

increased because they are less complex. In a real use-case,

some channels may be more popular than the others, so the

bitrate gain, or loss, of a channel affects the video traffic on

the network and is eventually multiplied by the number of

viewers that are watching the channel.

In this chapter, a new method is introduced to take the

channel audience into account in addition to the content

complexity when computing the allocation. Just like

complexity, the number of viewers of a live channel can

change over time, therefore dynamic allocation is the more

suitable allocation mode.

A. Video distribution network

Live Video streaming can be performed through different

set-ups, either a digital video broadcast or an OTT (Over the

Top) media streaming. A typical example is OTT streaming

over a content delivery network (CDN) as presented in Fig.

7, which is one of the most used set-ups for live and VOD

streaming (Video on Demand).

A CDN is a group of geographically distributed and

interconnected servers, it provides cached content to the end

users. In the field of video streaming, CDN is an essential

component in the distribution scheme. Video channels

require a high bandwidth to be transmitted, some channels

can have thousands or possibly millions of viewers watching

at the same time. The origin server usually has limited

capabilities, thus cannot serve all the viewers, even if it can,

the viewers could be distributed all over the world, the stream

then should travel a long distance for every single viewer.

Using a CDN, the stream is provided once by the origin and

delivered to the edge cache servers in the viewers’ regions, so

all the viewers in the same geographic area can fetch the

content from the nearest CDN edge cache (Fig. 8).

There are various solutions to get the audience

measurements, from the CDN itself like Wowza Media

System, which provides a near real-time API [16] to query

the number of viewers for a given channel, or, directly from

the players, as for example, Smart Sight API [17] by Media

Melon, which gives real-time analytics collected from the

players.

B. Cost function optimization

The goal is to minimize the overall distributed data over the

network by the streaming, going from the origin server where

the channels are encoded, to the end users passing through the

CDN edge cache servers, under the constraint of the video

head end limited CPU resource. The cost function to

minimize is given as (3):

 𝑱 = ∑ 𝒃𝒊
𝑵
𝒊=𝟏 (𝟏 + 𝒗𝒊) + 𝝀 ∗ 𝒗𝒊 ∗ 𝒅𝒊 (3)

Where, 𝑵 is the number of channels, 𝒃𝒊 is the bitrate of the

channel 𝒊, 𝒅𝒊 is its video distortion, 𝒗𝒊 the number of viewers

and 𝝀 is the Lagrange multiplier. The 1 in the term (𝟏 + 𝒗𝒊)

corresponds to the stream distributed from the origin server

to the CDN.

To optimize the function, the previously trained KNR

model is still applicable. The greedy algorithm however

Fig. 7: Video streaming over CDN.

Fig. 8: Example of CDN architecture, with Origin server in blue,

nodes in yellow and edge caches in green.

Allocation Algorithm

Initialize with the minimum allocation

Output: allocation

For channel = 1 to N do:

 allocation[channel] <-- minAllocation[config]

End

For cpu <-- 1 to M do:

 For channel = 1 to N do:

 CurrentAlloc <-- allocation[channel]

𝑔𝑎𝑖𝑛[𝑐ℎ𝑎𝑛𝑛𝑒𝑙] < − − (𝟏 + 𝑣𝑖) ∗
𝑲𝑵𝑹(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑙𝑙𝑜𝑐, 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦, 𝑞𝑢𝑎𝑙𝑖𝑡𝑦, 𝑐𝑜𝑛𝑓𝑖𝑔) +
 𝜆 ∗ 𝑣𝑖 ∗ 𝑑𝑖
 End

ChosenChannel <-- argmax(gain)

allocation[ChosenChannel] = allocation[ChosenChannel]

+1

End

Fig. 9: Allocation algorithm for audience and complexity-

based orchestration.

ACADÊMICO CALL FOR PAPERS – SESSÃO 2
 Audience and complexity aware live video encoders orchestration

166

SET EXPO PROCEEDINGS – SETEP v. 8
© 2022 SET - Brazilian Society of Television Engineering / ISSN (Print): 2447-0481/ ISSN (Online): 2447-049X

Available at: https://www.set.org.br/setep doi: 10.18580/setep.2022.47.3. Web Link: https://dx.doi.org/10.18580/setep.2022.47.3

needs to consider the number of viewers of the channels. The

updated algorithm is presented in Fig. 9.

TABLE IV: OVERALL BITRATES GENERATED BY TWO CHANNELS, FOR

DIFFERENT VIEWERS DISTRIBUTIONS.

C. Primary experiments

Several experiments have been conducted to emphasize the

importance of including the audience measurements along

with the complexity to maximize the encoding performance

in a cost-effective manner. In the first experiment, two HD

channels that have a nearly equivalent complexity levels are

encoded with an HEVC encoder in various scenarios. The

first channel Sports-1 is a 5-minutes rugby match sequence,

and Movie-3 is an action movie with the same duration. An

arbitrary total number of viewers is taken as 100000 viewers

for both channels. The considered scenario is that X%

(percent) of the viewers are watching Sports-1 and (100 - X)

% are watching Movie-3.

In all the different scenario presented in Table IV and Fig.

10, the proposed dynamic orchestrator managed to perform

better than the uniform allocation, with a gain varying as a

function of the viewers distribution. In the case where the two

channels are equally popular, the number of viewers is the

same and the complexity is equivalent, so the dynamic

orchestrator will allocate approximately a uniform allocation

and that explain why the gain is low. Also, the sequence

Sports-1 is slightly more complex than Movie-3, that why the

total bitrate and the gain are larger when the Sports-1 is the

most viewed.

The second experiment is conducted in the same

configuration, two HD channels encoded with an HEVC

encoder. However, the sequences in this experiment have

different complexity levels. The first sequence is Sports-1,

and the second is Movie-1, a historical movie. The results are

shown in Fig. 11. In the case of equal popularity, the

orchestrator still reduces the overall bitrate, because of the

complexity difference. Moreover, when the less complex

channel is the most viewed, there is always a gain with respect

to uniform allocation even if it’s smaller.

D. Full-scale experimental results

Here, a real use-case is simulated, where a content or

service provider has a set of live channels distributed to its

subscribers, each channel may be watched more or less than

the others. In this experiment four HD channels are encoded

with an HEVC encoder with the same configuration. The

video sequences used have different intrinsic content

complexity levels. The goal is to reduce the overall bitrate

generated by the channels over the distribution network

(CDN) when applying audience and complexity based

dynamic allocation compared to a uniform static allocation.

Several scenarios are considered where the distribution of

viewers is different. The total number of viewers is 100000,

the different distributions of the viewers over the 4 channels

are provided in Table V.

TABLE V: VIEWERS DISTRIBUTIONS SCENARIO DESCRIPTION.

Sports Movie-1 Movie-2 Animation

Scenario-1 70000 10000 10000 10000

Scenario-2 10000 70000 10000 10000

Scenario-3 10000 10000 70000 10000

Scenario-4 10000 10000 10000 70000

In the first scenario, the channel Sports is considered the

most watched, with 70% of total number of viewers, while

the other channels get each 10% of the total viewers. The

results are presented in Table VI, corresponding to the total

data generated by the four channels. The dynamic allocation

mode reduced this number by 13.33%, it is 45.95 Gbps

Sports-1

Viewers

Movie-3

viewers

Uniform

(Gbps)

Dynamic

(Gbps)

Gain

(%)

0% 100% 602.51 577.02 -4.23

5% 95% 617.41 596.0 -3.47

25% 75% 676.99 651.5 -3.77

50% 50% 752.09 751.46 -0.08

75% 25% 825.94 790.15 -4.33

95% 5% 885.52 820.1 -7.39

100% 0% 900.41 829.24 -7.9

Fig. 10: Bitrate over the distribution network of two similar

complexity channels with uniform and dynamic CPU allocation.

Fig. 11: Bitrate over the distribution network of two different

complexity levels channels with uniform and dynamic CPU

allocation.

ACADÊMICO CALL FOR PAPERS – SESSÃO 2
 Audience and complexity aware live video encoders orchestration

167

SET EXPO PROCEEDINGS – SETEP v. 8
© 2022 SET - Brazilian Society of Television Engineering / ISSN (Print): 2447-0481/ ISSN (Online): 2447-049X

Available at: https://www.set.org.br/setep doi: 10.18580/setep.2022.47.3. Web Link: https://dx.doi.org/10.18580/setep.2022.47.3

(Gigabit per second), and more than 14% of the most popular

channel spared just by changing the way that the available

CPU cores are allocated to the channel.

TABLE VI: TOTAL DATA GENERATED BY THE CHANNELS IN (MBPS).

Uniform Dynamic Gain

Movie-1 7812 8386 7.35

Movie-2 2920 2998 2.66

Sports 331813 285137 - 14.07

Animation 2163 2237 3.42

Total 344708 298758 - 13.33

The other scenarios have been tested as well; the results are

summarized in Table VII. In all the presented use cases, the

orchestrator succeeds in finding the optimal allocation that

reduces the total bitrate. The most popular channel will have

a larger weight (3), and consequently may be allocated more

CPU cores. The gain is maximal when the complex channel

is the most viewed, this is the expected behavior as illustrated

in Fig. 2, where the potential bitrate gain increases with the

content complexity.

TABLE VII: PERCENTAGE OF TOTAL BITRATE REDUCTION MADE IN

DYNAMIC CPU ALLOCATION COMPARED TO UNIFORM CPU ALLOCATION.

Scenario-1 Scenario-2 Scenario-3 Scenario-4

Movie-1 7.35 -8.12 0.06 0.63
Movie-2 2.66 12.37 -8.84 7.19
Sports - 14.07 -6.73 -6.46 -6.56
Animation 3.42 1.84 -0.34 -1.06
Total - 13.33 -5.42 -7.41 -2.01

V. CONCLUSION

In this paper, a new method is introduced for computing

the CPU allocation for live video encoders. It is demonstrated

that dynamic allocation is more suitable and give a significant

bitrate reduction compared to a uniform static allocation. In a

first mode, complexity aware dynamic orchestration showed

a gain up to 13.6% on a very demanding content, and an

average of 10% reduction of the overall bitrate required by

four channels. The second proposed mode considers the

number of viewers for each channel in an OTT streaming

environment. This method offers further gains, with more

than 14% reduction of the overall bitrate distributed over the

network by a complex channel, and an average of 13.33%

compared to a uniform allocation.

Finally, the proposed method needs 36% less CPU cores

compared to a uniform allocation to achieve the same video

quality at the same bitrate, which could reduce the operational

costs significantly.

REFERENCES

[1] N. Dragoni et al, Microservices: yesterday, today, and tomorrow 2016.

https://doi.org/10.48550/arXiv.1606.04036

[2] Francesco et al, Architecting with microservices: A systematic

mapping study. https://doi.org/10.1016/j.jss.2019.01.001
[3] G. Bjøntegaard, Calculation of average PSNR differences between RD-

curves, Technical Report VCEG-M33, ITU-T SG16/Q6, Austin,

Texas, USA, 2001.

[4] Docker Inc., Docker Swarm, Container’s orchestrator.

https://docs.docker.com/engine/swarm/key-concepts/
[5] The Linux Foundation , Kubernetes Platform Container’s

Orchestrator. https://kubernetes.io/docs/concepts/overview/what-
is-kubernetes/

[6] The Apache Software Foundation , Mesos A distributed systems

kernel. http://mesos.apache.org/
[7] Docker Inc , Docker Software containerization platform.

https://docs.docker.com/get-started/overview/
[8] A. Moussaoui, M. Raulet and T. Guionnet, "Dynamic Seamless

Resource Allocation for Live Video Compression on a Kubernetes

Cluster," in SMPTE Motion Imaging Journal, vol. 131, no. 4, pp. 45-

49, May 2022, doi: 10.5594/JMI.2022.3160832.

[9] MulticoreWare Inc, https://x265.readthedocs.io , x265 HEVC

implementation.

[10] Serge Hallyn, Linux Control Groups File System

https://man7.org/linux/man-pages/man7/cgroups.7.html
[11] The Linux Foundation , Kubernetes device plugin

https://kubernetes.io/docs/concepts/extend-
kubernetes/compute-storage-net/device-plugins/

[12] Yochai Blau
https://onlinelibrary.wiley.com/action/doSearch?Contri

bAuthorRaw=Berger%2C+Toby, Rethinking Lossy
Compression: The Rate-Distortion-Perception Tradeoff
https://doi.org/10.1002/0471219282.eot142.

[13] Linux Kernel Organization, NUMA

https://www.kernel.org/doc/html/v4.18/vm/numa.html
[14] Herbest et al, Elasticity in Cloud Computing: What It Is, and What It Is

Not. https://www.usenix.org/conference/icac13/technical-
sessions/presentation/herbst

[15] J. Vanne et al. Comparative Rate-Distortion-Complexity Analysis of

HEVC and AVC Video Codecs

[16] Wowza Inc. Viewers data API https://www.wowza.com/docs/how-to-

get-viewer-data-for-a-wowza-cdn-stream-target-by-using-the-wowza-

streaming-cloud-rest-api

[17] MediaMelon Inc. Players QoE analytics API

https://www.mediamelon.com/product-smartsight-qoe

[18] Kramer, O. (2013). K-Nearest Neighbors. In: Dimensionality

Reduction with Unsupervised Nearest Neighbors. Intelligent Systems

Reference Library, vol 51. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-38652-7_2

Abdelmajid Moussaoui received an

engineering degree in multimedia

networking from Telecom-Paris,

Paris, France, in 2020. He is a research

engineer in the Research and

Innovation Department of ATEME.

His current research areas are video

encoding, codec orchestration in the

cloud, and machine learning. He holds

several pending patents related to the

optimization of the orchestration of live video channels

distribution in the cloud.

Thomas Guionnet is a fellow

research engineer at ATEME, where

he currently leads the innovation

team’s research on artificial

intelligence applied to video

compression. Beyond his work for

ATEME, he has also contributed to

the ISO/MPEG - ITU-T/VCEG -

VVC, HEVC, and HEVC-3D

standardization process; he teaches video compression

at the ESIR Engineering School, Rennes, France; and

he has authored numerous publications including

patents, international conference papers, and journal

articles. Prior to joining ATEME, he spent 10 years at

ACADÊMICO CALL FOR PAPERS – SESSÃO 2
 Audience and complexity aware live video encoders orchestration

168

SET EXPO PROCEEDINGS – SETEP v. 8
© 2022 SET - Brazilian Society of Television Engineering / ISSN (Print): 2447-0481/ ISSN (Online): 2447-049X

Available at: https://www.set.org.br/setep doi: 10.18580/setep.2022.47.3. Web Link: https://dx.doi.org/10.18580/setep.2022.47.3

https://doi.org/10.48550/arXiv.1606.04036
https://doi.org/10.1016/j.jss.2019.01.001
https://docs.docker.com/engine/swarm/key-concepts/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
http://mesos.apache.org/
https://docs.docker.com/get-started/overview/
https://x265.readthedocs.io/
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Berger%2C+Toby
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Berger%2C+Toby
https://doi.org/10.1002/0471219282.eot142
https://www.kernel.org/doc/html/v4.18/vm/numa.html
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://www.wowza.com/docs/how-to-get-viewer-data-for-a-wowza-cdn-stream-target-by-using-the-wowza-streaming-cloud-rest-api
https://www.wowza.com/docs/how-to-get-viewer-data-for-a-wowza-cdn-stream-target-by-using-the-wowza-streaming-cloud-rest-api
https://www.wowza.com/docs/how-to-get-viewer-data-for-a-wowza-cdn-stream-target-by-using-the-wowza-streaming-cloud-rest-api
https://www.mediamelon.com/product-smartsight-qoe
https://doi.org/10.1007/978-3-642-38652-7_2

Envivio conducting research on real-time encoding,

video-preprocessing, and video quality assessment. He

holds a PhD from Rennes 1 University, Rennes.

Mickaël Raulet is the chief

technology officer at ATEME, where

he drives research and innovation

with various collaborative research

and development projects. He

represents ATEME in several

standardization bodies: ATSC, DVB,

3GPP, ISO/IEC, ITU, MPEG, DASH-

IF, CMAF-IF, SVA, and UHDForum.

He is the author of numerous patents and more than 100

conference papers and journal scientific articles. In 2006, he

received a PhD from INSA in electronic and signal

processing, in collaboration with Mitsubishi Electric ITE,

Rennes, France.

SET EXPO PROCEEDINGS – SETEP v. 8
© 2022 SET - Brazilian Society of Television Engineering / ISSN (Print): 2447-0481/ ISSN (Online): 2447-049X

Available at: https://www.set.org.br/setep doi: 10.18580/setep.2022.47.3. Web Link: https://dx.doi.org/10.18580/setep.2022.47.3

ACADÊMICO CALL FOR PAPERS – SESSÃO 2
 Audience and complexity aware live video encoders orchestration

169

Cite this article:
Moussaoui, Abdelmajid, Guionnet, Thomas, Raulet, Mickaël ; 2022.
Audience and complexity aware live video encoders orchestration. SET
EXPO PROCEEDINGS. ISSN Print: 2447-0481. ISSN Online:
2447-049X. v.8. doi: 10.18580/setep.2022.47.3. Web Link: https://
dx.doi.org/10.18580/setep.2022.47.3

