
Abstract—Video encoding services are known to be 

computationally intensive. In a software environment, it is 

desirable to be able to adapt to the available computing 

resources. Therefore, modern live video encoders have the 

“elasticity” feature. That is, their algorithmic complexity adapts 

automatically to the number and capabilities of available CPU 

cores. In other words, the more CPU are allocated to a live video 

encoder, the higher the encoding performance. Until recently, 

the elasticity feature was used as an ad-hoc adaptation to 

uncontrollably varying conditions. In this paper, mechanisms 

allowing to take control of the computing resource are 

presented. Two real-time resource optimizations strategies are 

then proposed. The first one is based on video content 

complexity and manages the video head-end costs, while the 

second relates to audience measurements and targets network 

bandwidth usage optimization.  

Index Terms—Video compression, live encoding, Kubernetes, 

orchestration  

I. INTRODUCTION

In the field of video encoding, microservices architecture is 

becoming more and more beneficial over monolithic 

applications. The concept of microservices [1][2] allows a 

dramatic reduction of the design and implementation cycles 

durations and simplifies support and update of the 

applications. The virtualization concept on the other hand, 

allows being highly flexible and independent of the hardware. 

In the case of video compression, where performance is 

critical, the optimal granularity of the microservices must be 

optimized under constraints of real-time, low-latency, 

efficient data flow and availability. Practically, microservices 

must be stored in containers. The high number of containers 

requires orchestration. Among many available solutions 

[4][5][6], the work presented in this paper relies on Docker 

[7] for containerization and Kubernetes [5] for orchestration.

The video encoding solution considered in this paper is

composed of several independent services which are thus 

managed by Kubernetes. However, the performance of a 

practical implementation of a video encoder is a trade-off 

between bitrate, perceived video quality, computing resource 

and architecture design. Kubernetes allows controlling the 

number of resources dedicated to each microservice. Thus, in 

the video compression context, one may consider allocating 

the resource non uniformly to different video services, 

depending on the desired trade-off for each video service. 

This must be carried out explicitly by the user though, since 

Kubernetes, as an orchestrator, is blind to the specifics of 

each application. 

The proposed allocation solution will leverage previously 

introduced method [8] to seamlessly update the CPU for a 

service running on Kubernetes without service interruption. 

A full experimental system is demonstrated, applying the 

proposed dynamic resource allocation to a set of live encoders 

deployed in a Kubernetes environment. The rest of this paper 

is organized as follows: first, some elements of context and 

preliminary results are provided. Then two versions of the 

custom-orchestrator are detailed, complexity-based and 

audience-based. Finally experimental results are provided for 

each mode before conclusion. 

II. CONTEXT, ELASTICITY AND CPU ALLOCATION

A given video encoder implementation can provide several 

trade-offs between resource consumption and video quality. 

This is the case, for example, with the High Efficiency Video 

Coding (HEVC) implementation x265 [9]. The tuning 

parameter ( -preset ) allows choosing a speed/coding 

performance trade-off in a range of predetermined settings. In 

this paper, the considered encoder adapts automatically to the 

available computing resources. That is, given the real-time 

constraint, the encoder chooses its parameters automatically 

depending on the platform capacity and current load. This 

tuning is updated dynamically. If the overall load of the 

platform changes, the tuning changes accordingly. The more 

computing resources available, the better the delivered 

coding efficiency. This concept is called video encoder 

elasticity [14]. 

As an illustration of the elasticity concept, example 

experiments have been conducted using the HEVC codec in 

its default configuration. All the considered video sequences 

have a 1080p (high definition, HD) resolution. Fig.  1 presents 

rate-distortion curves [12] for several encodings of the same 

12 minutes movie extract. Each encoding is performed in 

real-time, with a fixed number of central processing unit 

(CPU) cores allocated to the corresponding microservice. In 

the video compression context, a rate-distortion curve 

illustrates the trade-off between bitrate and distortion (or 

quality) achieved by an encoder implementation or 

configuration. A configuration is found to be better than a 

reference configuration if its rate-distortion curve is above the 

reference rate-distortion curve. That is, for a given distortion, 

the bitrate is found to be lower, or conversely, for a given 

bitrate, the quality is found to be higher.  The experimental 

observations confirm that the encoder adapts to the available 
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computing resource. Indeed, all the curves of Fig.  1 have 

been generated with strictly the same configuration, except 

for the number of CPU allocated. Thus, the rate-distortion 

performance improves as the CPU number increases. 

In a second experiment, the encodings of two different 12 

minutes movie extracts are considered. The two contents have 

the same resolution and are both encoded using HEVC. An 

arbitrary fixed budget of 20 CPU cores is allocated to be 

shared between the two encoders. One must note that this 

fixed CPU budget is shared in a controlled manner between 

the two channels. A first part is allocated exclusively to the 

first channel, and the remaining part is allocated exclusively 

to the second channel. One may split it even and allocate 10 

CPU cores to each channel or decide to allocate more CPU 

cores to one of the channels. The goal of this experiment was 

to find the optimal repartition of these 20 CPU cores between 

the two encoders, which minimizes the distortion for a given 

bitrate. The experiment showed that the allocation that 

maximizes the overall quality is not uniform, as illustrated on 

Fig.  2.  

Both encoders have the same configuration, the difference 

is the encoded content itself. The channel 2 contains more 

complex content compared to channel 1. A video sequence is 

said to be more complex if it contains more information, like 

more motion or image texture, than the other sequence. The 

encoder must make more effort on a complex sequence to 

achieve the same coding efficiency as on a simple sequence.  

III. COMPLEXITY BASED ORCHESTRATION

A. Dynamic CPU allocation

The second experiment (Fig.  2) showed that for two 

channels with the same configuration, the allocation that 

minimized the distortion – thus maximizes the video quality 

– is not a uniform allocation, but rather a CPU cores

distribution where the channel with high content complexity

needs to be allocated more than the lower content complexity

channel. Additionally, it is well known that the characteristics

of contents are not constant in time. This is especially true for

a 24/7 live channel. With a limited number of computational

resources, dynamic resource allocation can improve the

overall compression efficiency of a set of live channels.

The encoders run as part of a micro-services application in 

a Kubernetes cluster. All encoding services are running in 

Pods, the smallest Kubernetes manageable unit. A Pod 

contains one or several containers, and the hardware 

resources (CPU, memory, …) are managed at the container 

level. The native and supported way for Kubernetes to update 

the resources allocated to a container in a given Pod is to stop 

and restart the Pod with the desired resources allocation.  

For a live video encoder, the reboot of the Pod even for 

milliseconds will lead to the loss of multiple video frames. 

However, service interruption of a live service is not 

acceptable. In a previous work [8] authors proposed a method 

for dynamic resource allocation for Kubernetes Pods with 

zero downtime. 

The allocation system relies on an interaction between 

operating system features and Kubernetes device plugin 

feature [11]. It consists in updating the number of resources 

advertised to the Kubernetes scheduler and changing the 

current allocation using the Linux system tools in a way that 

is transparent to Kubernetes. 

Fig.  3 present the interaction between Kubernetes cluster 

and the dynamic allocation service (PodHandler). The 

PodHandler gets the new allocation computed by the 

orchestrator, then interacts with the device plugin to update 

the number of custom resources advertised to Kubernetes 

Scheduler, the next step is to update the Pod’s Cgroups [10] 

Completely Fair Scheduler Quota (CFS Quota) that controls 

the Pod’s CPU usage limit. Linux tool taskset is used to 

change CPU affinity to meet the new allocation. Finally, the 

resource state is updated for every server in a database 

managed by the Resource Allocation Daemon service. 

Fig.  1: Rate-Distortion curves for different CPU core allocations. 

Fig.  2: Sum of Mean Squared Errors (MSE) for different CPU 

allocations among two video channels. 

Fig.  3: Resources updating and orchestration process. 
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B. Complexity based orchestration

The orchestrator computes optimal CPU resource allocation 

and relies on the PodHandler to apply this allocation. The 

orchestration algorithm is organized in two steps: 

- Predicting the bitrate gain with the help of a machine

learning algorithm

- Computing the optimal allocation that minimizes the

function (1), based on the bitrate gain predictions:

 𝑱 = ∑ 𝒃𝒊
𝑵
𝒊=𝟏  + 𝝀 ∗ 𝒅𝒊 , (1) 

where, 𝑵 is the number of channels 𝒃𝒊 is the bitrate of the

channel 𝒊, 𝒅𝒊 is its video distortion and 𝝀 is the Lagrange

multiplier. 

For the first step, the orchestrator uses a trained machine 

learning model that predicts for every channel the possible 

gain of a given CPU allocation with respect to a reference 

allocation, the model takes as input several parameters: 

- Video Codec (HEVC, AVC, AV1…)

- Channel configuration (Frame rate, resolution, bit

depth…)

- Video quality (PSNR)

- Number of CPU cores

- Channel’s complexity estimation

A K-Neighbors Regressor (KNR) [18] algorithm is used 

for this task. The dataset is composed of various encodings 

with different configuration and content complexity. Fig.  4 

illustrates the predictions made by the model for two different 

video sequences. The first sequence exhibits low complexity 

content and the second one high complexity. Both contents 

are encoded by an HEVC encoder and have the same 

configuration (25 fps, 1080p resolution, 8-bit depth…).  The 

graphs in Fig.  4 show the KNR model estimation of the 

bitrate gain for a given CPU allocation with respect to the 

minimum allocation (5 CPU cores here), the video quality 

remaining constant. The complex channel takes better 

advantage of any additional CPU core. Additionally, from a 

CPU cores number threshold, additional CPU core will no 

longer provide bitrates reduction. This threshold is much 

higher for the high complexity channel than for the low 

complexity channel. Finally, the reliability of the prediction 

is assessed by comparing it to the actual encoder behavior. 

In a second step, the result of gain estimation is used to 

compute the optimal allocation that will minimize the cost 

function. The algorithm proposed is a greedy algorithm, and 

since all curves predicted by the KNR model are strictly 

decreasing, it is guaranteed that it will return the optimal 

solution.  

Let N be the number of channels in a given server, 

minAllocation returns the minimum allocation possible for a 

video channel to operate normally and M is the disputed CPU 

cores given in function (2): 

𝑀 = 𝑡𝑜𝑡𝑎𝑙𝐶𝑃𝑈𝑠 − ∑ 𝑚𝑖𝑛𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖
𝑁
𝑖=1  (2) 

Since the model returns the bitrate gain for a constant 

PSNR, the distortion term in the algorithm is also constant, 

thus, the Lagrange multiplier can be put to 0.  

The algorithm provided on Fig.  5 will return the allocation 

that minimizes the total bitrate of all channels while keeping 

the same video quality. Note that the number of allocated 

CPU cores to the channels is an integer number, in order to 

ensure optimal usage of threading and CPU cache memory. 

After receiving the number of cores, the PodHandler will take 

care of finding the best CPU affinity considering the NUMA 

architecture [13] of the physical processor. 

C. Complexity-based orchestration experimental results

1) Bitrate minimization

Many tests have been conducted with various

configurations and repeated to validate the stability of the 

Fig.  4: Bitrate gain predicted by KNR model for, (a) low 

complexity channel, (b) high complexity channel. 

Allocation Algorithm 

Initialize with the minimum allocation 

Output: allocation  

For channel = 1 to N do: 

   allocation[channel] <-- minAllocation[config] 

End 

For cpu <-- 1 to M do: 

  For channel = 1 to N do: 

   CurrentAlloc <-- allocation[channel] 

       𝑔𝑎𝑖𝑛[𝑐ℎ𝑎𝑛𝑛𝑒𝑙] < − −  𝑲𝑵𝑹(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑙𝑙𝑜𝑐,
𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦, 𝑞𝑢𝑎𝑙𝑖𝑡𝑦, 𝑐𝑜𝑛𝑓𝑖𝑔 ) +   𝜆 ∗  𝑑𝑖 
      End  

ChosenChannel <-- argmax(gain) 

allocation[ChosenChannel] = allocation[ChosenChannel] 

+1

End 

Fig.  5: Allocation algorithm for complexity-based orchestration. 
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system running live. From a large set of varied sequences, 

several subsets have been selected to perform our 

experiments. Little variation in the results has been observed, 

as long as the subsets are heterogeneous. In a sense, the 

behavior of the system is comparable to a statistical 

multiplexer (statmux), as an allocation for a set of sequences 

having all the same characteristics brings little to no gain. The 

following example has been kept as a meaningful 

representative of these experiments. 

Four 1080p channels of 5 minutes duration, encoded using 

an HEVC encoder, configured in constant quality mode and 

targeting the same video quality. This mode delivers variable 

bitrate (VBR) streams. Therefore, the performance at a given 

quality is measured by the bitrate. The better the allocation, 

the lower the bitrate. An arbitrary number of 28 CPU cores is 

available to be shared between the 4 channels. These channels 

have all different content complexity levels. 

  Two allocation scenarios are run and compared. The first is 

a uniform allocation, where every channel gets a fixed 7 CPU 

cores no matter its content. The second is dynamic allocation; 

in this mode, the orchestrator will compute the optimal 

allocation periodically based on the content complexity. 

Fig.  6 illustrates the changes of the allocation over time 

for the four channels depending on their respective 

complexities. As one may expect, the sports content is more 

complex than the others, hence a larger allocation has been 

granted to it almost all the time. 

TABLE I: BDRATE GAINS COMPARED TO UNIFORM ALLOCATION. 

Movie-1 Movie-2 Sports Animation Mean 

BDRate 2.93% 2.63% -8.85% 1.23% -0.51%

For the proposed combination of sequence and settings, 

rate distortion curves are derived from which Bjøntegaard 

Delta Rates (BDRates) [3] can be computed. Table I presents 

the BDRate gains relative to the uniform allocation. 

Negatives values indicate a gain (bitrate reduction), and 

positives values a loss. The first observation is that resource 

augmentation for one channel implies resource reduction for 

at least one other channel, leading to BDRate losses. Still, 

with the proposed dynamic allocation, an overall BDRate 

gain is achievable. 

However, the BDRate is a relative performance metric 

especially when comparing sequences with different content 

types. The actual bitrates are provided in Table . The overall 

performance is measured by the sum of the bitrates for the 4 

channels, with a lower total bitrate indicating better 

performance.  

TABLE II: BITRATES IN MBPS FOR ALL RUNS AT THE SAME QUALITY. 

Uniform Dynamic Gain 

Movie-1 0.686 0.709 3.35% 

Movie-2 0.245 0.250 2.04% 

Sports 4.015 3.469 - 13.6%

Animation 0.195 0.198 1.54% 

Total 5.141 4.626 - 10%

Compared to uniform allocation, dynamic allocation 

reduces the bitrate by 10%. For the highest bitrate sequence, 

Sports, the required bitrate is reduced by 13.6% thanks to 

dynamic allocation, which represents more than 0.5 Mbps on 

a very demanding content. The absolute bitrate increase on 

the other channels is comparatively negligible. Gaining more 

than 0.5 Mbps on a channel is an opportunity to reach more 

users with the full resolution quality. For the content provider, 

it also translates into cost control. With uniform allocation, 

more CPU cores would be necessary to reach the same bitrate 

as the proposed solution, hence a higher cost. In a summary, 

this experiment showed 10% overall bitrate gain in dynamic 

allocation mode while using the same CPU budget and 

achieving the same video quality. 

2) CPU Usage Optimization

In the previous experiment the goal was to allocate the

available CPU cores in order to reduce the required bitrate at 

a given video quality. In a case where the aim is to minimize 

the encoding cost, i.e., to use less CPU cores (e.g., when using 

public cloud) or increase the channels density (have more 

channels in the same server), dynamic allocation allows 

reducing the total CPU cores required for a set of channels 

compared to the uniform allocation mode while achieving the 

same bitrate for the same video quality. 

TABLE III: BITRATES (MBPS) FOR UNIFORM AND DYNAMIC ALLOCATION 

WITH DIFFERENT CPU BUDGET. 

Uniform 44 

CPU Cores 

Dynamic 28 

CPU Cores 

Gain 

Movie-1 0.679 0.709 4.42% 

Movie-2 0.246 0.250 1.63% 

Sports 3.546 3.469 -2.17%

Animation 0.2 0.198 -1%

Total 4.671 4.626 -0.96%

The experiment setup is the same as the previous one, four 

live HD channels are encoded with an HEVC encoder in 

constant quality mode. For the uniform allocation, 44 CPU 

cores are allocated to the channels (11 cores for each). The  

Table III shows the bitrates achieved for a given video quality 

in the uniform and dynamic CPU allocation modes. For the 

dynamic allocation, a total budget of 28 CPU cores is 

allocated which is 36% less than the 40 CPU cores of the 

uniform allocation. Yet, a gain of 0,96% of required bitrate is 

achieved compared to the uniform allocation mode. In 

Fig.  6: Dynamic allocation of 28 CPU cores among 4 channels 

encodings. 
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summary, this experiment shows that one can save up to 36% 

of CPU cores when applying a content complexity aware 

dynamic allocation on a set of live channels in a public or 

private cloud. 

IV. AUDIENCE AND COMPLEXITY BASED ORCHESTRATION

The complexity-based allocation method optimizes the 

video encoding performance in the video head-end. The result 

was a lower overall bitrate compared to a uniform allocation. 

However, some channels have seen their required bitrates 

increased because they are less complex. In a real use-case, 

some channels may be more popular than the others, so the 

bitrate gain, or loss, of a channel affects the video traffic on 

the network and is eventually multiplied by the number of 

viewers that are watching the channel. 

In this chapter, a new method is introduced to take the 

channel audience into account in addition to the content 

complexity when computing the allocation. Just like 

complexity, the number of viewers of a live channel can 

change over time, therefore dynamic allocation is the more 

suitable allocation mode. 

A. Video distribution network

Live Video streaming can be performed through different 

set-ups, either a digital video broadcast or an OTT (Over the 

Top) media streaming. A typical example is OTT streaming 

over a content delivery network (CDN) as presented in Fig.  

7, which is one of the most used set-ups for live and VOD 

streaming (Video on Demand). 

A CDN is a group of geographically distributed and 

interconnected servers, it provides cached content to the end 

users. In the field of video streaming, CDN is an essential 

component in the distribution scheme. Video channels 

require a high bandwidth to be transmitted, some channels 

can have thousands or possibly millions of viewers watching 

at the same time. The origin server usually has limited 

capabilities, thus cannot serve all the viewers, even if it can, 

the viewers could be distributed all over the world, the stream 

then should travel a long distance for every single viewer.  

Using a CDN, the stream is provided once by the origin and 

delivered to the edge cache servers in the viewers’ regions, so 

all the viewers in the same geographic area can fetch the 

content from the nearest CDN edge cache (Fig.  8). 

There are various solutions to get the audience 

measurements, from the CDN itself like Wowza Media 

System, which provides a near real-time API [16] to query 

the number of viewers for a given channel, or, directly from 

the players, as for example, Smart Sight API [17] by Media 

Melon, which gives real-time analytics collected from the 

players. 

B. Cost function optimization

The goal is to minimize the overall distributed data over the 

network by the streaming, going from the origin server where 

the channels are encoded, to the end users passing through the 

CDN edge cache servers, under the constraint of the video 

head end limited CPU resource. The cost function to 

minimize is given as (3): 

 𝑱 = ∑ 𝒃𝒊
𝑵
𝒊=𝟏 (𝟏 + 𝒗𝒊) +  𝝀 ∗  𝒗𝒊 ∗ 𝒅𝒊 (3) 

Where, 𝑵 is the number of channels, 𝒃𝒊 is the bitrate of the

channel 𝒊, 𝒅𝒊 is its video distortion, 𝒗𝒊 the number of viewers

and 𝝀 is the Lagrange multiplier. The 1 in the term (𝟏 + 𝒗𝒊)

corresponds to the stream distributed from the origin server 

to the CDN. 

To optimize the function, the previously trained KNR 

model is still applicable. The greedy algorithm however 

Fig.  7: Video streaming over CDN. 

Fig.  8: Example of CDN architecture, with Origin server in blue, 

nodes in yellow and edge caches in green. 

Allocation Algorithm 

Initialize with the minimum allocation 

Output: allocation  

For channel = 1 to N do: 

   allocation[channel] <-- minAllocation[config] 

End 

For cpu <-- 1 to M do: 

  For channel = 1 to N do: 

   CurrentAlloc <-- allocation[channel] 

𝑔𝑎𝑖𝑛[𝑐ℎ𝑎𝑛𝑛𝑒𝑙] < − − (𝟏 + 𝑣𝑖) ∗
𝑲𝑵𝑹( 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑙𝑙𝑜𝑐, 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦, 𝑞𝑢𝑎𝑙𝑖𝑡𝑦, 𝑐𝑜𝑛𝑓𝑖𝑔 ) +
 𝜆 ∗  𝑣𝑖 ∗  𝑑𝑖 
      End  

ChosenChannel <-- argmax(gain) 

allocation[ChosenChannel] = allocation[ChosenChannel] 

+1

End 

Fig.  9: Allocation algorithm for audience and complexity-

based orchestration. 
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needs to consider the number of viewers of the channels. The 

updated algorithm is presented in Fig.  9. 

TABLE IV: OVERALL BITRATES GENERATED BY TWO CHANNELS, FOR 

DIFFERENT VIEWERS DISTRIBUTIONS. 

C. Primary experiments

Several experiments have been conducted to emphasize the 

importance of including the audience measurements along 

with the complexity to maximize the encoding performance 

in a cost-effective manner. In the first experiment, two HD 

channels that have a nearly equivalent complexity levels are 

encoded with an HEVC encoder in various scenarios. The 

first channel Sports-1 is a 5-minutes rugby match sequence, 

and Movie-3 is an action movie with the same duration. An 

arbitrary total number of viewers is taken as 100000 viewers 

for both channels. The considered scenario is that X% 

(percent) of the viewers are watching Sports-1 and (100 - X) 

% are watching Movie-3.   

In all the different scenario presented in Table IV and Fig. 

10, the proposed dynamic orchestrator managed to perform 

better than the uniform allocation, with a gain varying as a 

function of the viewers distribution. In the case where the two 

channels are equally popular, the number of viewers is the 

same and the complexity is equivalent, so the dynamic 

orchestrator will allocate approximately a uniform allocation 

and that explain why the gain is low. Also, the sequence 

Sports-1 is slightly more complex than Movie-3, that why the 

total bitrate and the gain are larger when the Sports-1 is the 

most viewed.  

The second experiment is conducted in the same 

configuration, two HD channels encoded with an HEVC 

encoder. However, the sequences in this experiment have 

different complexity levels. The first sequence is Sports-1, 

and the second is Movie-1, a historical movie. The results are 

shown in Fig.  11. In the case of equal popularity, the 

orchestrator still reduces the overall bitrate, because of the 

complexity difference. Moreover, when the less complex 

channel is the most viewed, there is always a gain with respect 

to uniform allocation even if it’s smaller. 

D. Full-scale experimental results

Here, a real use-case is simulated, where a content or 

service provider has a set of live channels distributed to its 

subscribers, each channel may be watched more or less than 

the others. In this experiment four HD channels are encoded 

with an HEVC encoder with the same configuration. The 

video sequences used have different intrinsic content 

complexity levels. The goal is to reduce the overall bitrate 

generated by the channels over the distribution network 

(CDN) when applying audience and complexity based 

dynamic allocation compared to a uniform static allocation. 

Several scenarios are considered where the distribution of 

viewers is different. The total number of viewers is 100000, 

the different distributions of the viewers over the 4 channels 

are provided in Table V.  

TABLE V: VIEWERS DISTRIBUTIONS SCENARIO DESCRIPTION. 

Sports Movie-1 Movie-2 Animation 

Scenario-1 70000 10000 10000 10000 

Scenario-2 10000 70000 10000 10000 

Scenario-3 10000 10000 70000 10000 

Scenario-4 10000 10000 10000 70000 

In the first scenario, the channel Sports is considered the 

most watched, with 70% of total number of viewers, while 

the other channels get each 10% of the total viewers. The 

results are presented in Table VI, corresponding to the total 

data generated by the four channels. The dynamic allocation 

mode reduced this number by 13.33%, it is 45.95 Gbps 

Sports-1 

Viewers 

Movie-3 

viewers 

Uniform 

(Gbps) 

Dynamic 

(Gbps) 

Gain 

(%) 

0% 100% 602.51 577.02 -4.23

5% 95% 617.41 596.0 -3.47

25% 75% 676.99 651.5 -3.77

50% 50% 752.09 751.46 -0.08

75% 25% 825.94 790.15 -4.33

95% 5% 885.52 820.1 -7.39

100% 0% 900.41 829.24 -7.9

Fig.  10: Bitrate over the distribution network of two similar 

complexity channels with uniform and dynamic CPU allocation. 

Fig.  11: Bitrate over the distribution network of two different 

complexity levels channels with uniform and dynamic CPU 

allocation. 
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(Gigabit per second), and more than 14% of the most popular 

channel spared just by changing the way that the available 

CPU cores are allocated to the channel. 

TABLE VI: TOTAL DATA GENERATED BY THE CHANNELS IN (MBPS). 

Uniform Dynamic Gain 

Movie-1 7812 8386 7.35 

Movie-2 2920 2998 2.66 

Sports 331813 285137 - 14.07

Animation 2163 2237 3.42 

Total 344708 298758 - 13.33

The other scenarios have been tested as well; the results are 

summarized in Table VII. In all the presented use cases, the 

orchestrator succeeds in finding the optimal allocation that 

reduces the total bitrate. The most popular channel will have 

a larger weight (3), and consequently may be allocated more 

CPU cores. The gain is maximal when the complex channel 

is the most viewed, this is the expected behavior as illustrated 

in Fig.  2, where the potential bitrate gain increases with the 

content complexity. 

TABLE VII:  PERCENTAGE OF TOTAL BITRATE REDUCTION MADE IN 

DYNAMIC CPU ALLOCATION COMPARED TO UNIFORM CPU ALLOCATION. 

Scenario-1 Scenario-2 Scenario-3 Scenario-4 

Movie-1 7.35 -8.12 0.06 0.63 
Movie-2 2.66 12.37 -8.84 7.19 
Sports - 14.07 -6.73 -6.46 -6.56
Animation 3.42 1.84 -0.34 -1.06
Total - 13.33 -5.42 -7.41 -2.01

V. CONCLUSION

In this paper, a new method is introduced for computing 

the CPU allocation for live video encoders. It is demonstrated 

that dynamic allocation is more suitable and give a significant 

bitrate reduction compared to a uniform static allocation. In a 

first mode, complexity aware dynamic orchestration showed 

a gain up to 13.6% on a very demanding content, and an 

average of 10% reduction of the overall bitrate required by 

four channels. The second proposed mode considers the 

number of viewers for each channel in an OTT streaming 

environment. This method offers further gains, with more 

than 14% reduction of the overall bitrate distributed over the 

network by a complex channel, and an average of 13.33% 

compared to a uniform allocation.  

Finally, the proposed method needs 36% less CPU cores 

compared to a uniform allocation to achieve the same video 

quality at the same bitrate, which could reduce the operational 

costs significantly. 
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