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Abstract—Neural Networks (NN) are being researched and
improved to a degree that machines can closely resemble the
capacity to execute complex tasks that only an intelligent animal
is capable of. Vision used in the interpretation and recognition
of the environment is one of such tasks that is being researched
so future technologies can simulate vision in autonomous vehi-
cles to further improve self-driving capabilities, increase driver
convenience, help avoid accidents, and even autonomous delivery.
Convolutional neural networks, inspired by the mechanics of ani-
mal vision, are utilized for the complex task of image recognition.
Field Programmable Gate-Arrays (FPGA) recent developments
have given it more parallel processing and processing speed
making it a prime candidate for the implementation of NNs
efficiently, with more processing capabilities and low response
times compared with the alternatives. The objective of this work
is to evaluate the performance viability of FPGA implementation
of an image classification NN with acceptable accuracy and low
response time.

Index Terms—FPGA; CNN; autonomous vehicles; MNIST.

I. INTRODUCTION

Artificial intelligence has attracted attention from the most
varied types of industries, with several studies being carried
out on the subject and with recent advances in hardware,
increasingly complex algorithms are being developed with
adequate processing time, making it possible to derive useful
and fast information from large amounts of information, but
the question of efficient hardware implementation remains to
execute these algorithms quickly and efficiently.

Along with the development of techniques and studies,
the applications of convolutional neural networks (CNNs)
have grown considerably, mainly in activities that require
understanding at a level comparable to that of a human being,
such as natural language processing and computer vision and it
is possible to incorporate CNNs to assist in processing audio,
image classification, scenario labeling, and facial recognition
[1], [2]. Some networks achieve better results than human
performance as evidenced in the work of [3]. The impressive
performance of these networks comes at the cost of large
memory bandwidth and intensive use of computational logical
resources [4].

CNNs have excellent performance when it comes to image
classification, but such networks require millions or even

billions of operations per second to classify an image, which
makes network implementation a challenge in terms of com-
putational power and memory storage capacity. For example,
in 2012 Alexnet [5], with a network architecture that required
the storage of 60 million parameters to process an image, won
the Imagenet contest [6]. In 2014 the VGGNET network [7]
wins the same contest, but its design required loading about
seven times more parameters, because of this, the network
required dedicated hardware to run.

CNNs have enabled the increasing automation of tasks
and machines such as autonomous cars, the idea of product
delivery via drone is already being discussed [8], but in the
same way, as autonomous cars require a large amount of
information and an equally large processing power together
with a robust algorithm to detect and recognize obstacles
[9], drones or autonomous aircraft require an even faster
processing and image recognition capacity. To be able to
follow the movements and maneuvers performed by these
vehicles. The choice of hardware for implementing CNNs
is important because it will influence the needs and results
of the network, for training the choice mostly adopted is
a graphics processing unit (GPU), due to its great capacity
for parallelism of calculations, reaching 11 trillion floating
point operations per second (TFLOP/s) and due to the need
to train the neural network only once, the GPU’s energy
consumption does not significantly impact the process, as for
the implementation of the network in themselves, they can
be implemented either on GPU, Field Programmable Gate-
Arrays (FPGA) or Central Processing Unit (CPU), being more
flexible FPGAs when compared to ASICs, counting on easy
and fast implementation in the market and upgradeability even
after implementation compared to CPU and it is also worth
mentioning its potential for improving the architecture, energy
savings compared to GPU and the possibility of using different
formats and numerical representations. Microsoft has recently
explored the possibility of CNNs on FPGAs as cost-effective
network accelerators in a data center [10], [11]. Many studies
are being carried out on accelerators for CNNs implemented in
FPGAs [12], [13], as well as tools to generate such accelerators
automatically [14], [15]. Studies have also been carried out on
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CNNs networks with low accuracy, networks using weights
and activation function with numbers in binary format [6], [16]
and in some cases, the network has an accuracy comparable
to networks using 32-bit floating point, these types of imple-
mentation are attractive in FPGAs because they take advantage
of the efficiency of operations performed on Look Up Tables
(LUTs). The implementation in FPGAs has seen more and
more attention due to the constant development of tools that
help and automate the development of implementations on
the board, the Xilinx Vivado tool for high-level synthesis
(HLS) allows the user to write code with a reasonable level
of abstraction and the tool’s algorithm compiles the code for
register transfer level (RTL) between registers [17].

For complex tasks that require a large number of cal-
culations, but which, at the same time, demand efficiency
and low response time, CNN in FPGA focused on image
recognition would be a tool that would drive the development
and implementation of such technologies to advance sectors
that would benefit from autonomous aerial vehicles and make
the autonomous car industry even more robust.

II. NEURAL NETWORKS
A fundamental component of neural networks, in general,

are artificial neurons, inspired by biological neurons, which are
responsible for most of the processing that occurs in artificial
neural networks (ANNs) and can be arranged within a network
in various ways.

Fig. 1: Perceptron.

It’s possible to observe the general structure of a neuron
or perceptron in Fig. 1 where from X0 to Xn representing
input data or signals from neurons from another layer, the
synaptic weights W0 to Wn that determine how excitatory
or inhibitory the signal is for the neuron. The adder block
is responsible for summing the modified input signals with a
predetermined value θ called bias, its function is to increase
or decrease the net input, in order to translate the activation
function on the axis, it can also be used so that, in the network
training process, changes in synaptic weights result in less
drastic changes in the network as a whole since the bias is
independent of the input value in the system, which helps
the network to converge on an ideal solution and can also

be used to make the value needed to activate the activation
function larger or smaller. NNs generally have a forward
propagation architecture where signals entering the system
propagate towards the output in a single direction. The model
represents artificial neurons and can be represented by the
following equations 1 and 2

u = (
n∑

i=1

Xn ×Wn)− θ (1)

y = Φ(u) (2)

The weight parameters Wn and bias θ are adjusted in the
training of neurons in the network according to the final
application.

Fig. 2: MLP network.

An ANN can have a different number of layers which can
be classified into three categories:

• Input layer: responsible for receiving data, signals, or
characteristics from the external environment that are
usually normalized in relation to the ranges of dynamic
variations produced by the activation functions, which
improves the accuracy of the network as a whole.

• Hidden layers: composed of neurons with the function of
extracting characteristics associated with the system to be
inferred.

• Output layer: a layer of neurons responsible for present-
ing the final results of the network, from the signals
received by the layers that precede it.

The Multiple Layer Perceptron (MLP) network contains
at least one intermediate layer, in contrast to the single-
layer perceptron network, the MLP has one or more hidden
or hidden layers between the input and output layers. MLP
networks are more complex in their structure, which allows
them to perform more complex work compared to the networks
mentioned above and can solve problems that would go
beyond binary classification. MLP networks have feed-forward
regardless of the number of layers, the first layer captures the
signals to be processed, then the intermediate layers extract
information about the signals, process and encode through
their respective synaptic weights, bias, and activation function
and the output layer receives the resulting stimuli from the
intermediate layers and produces the network response. Note
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that in an MLP network it is possible to have multiple neurons
in the output layer, resulting in the network having multiple
output possibilities.

The adjustment of synaptic weights of the MLP network
takes place through the backpropagation process, which con-
sists of an algorithm that calculates the gradient of the error
function, starting at the output layer and propagating towards
the input layer, partially reusing the calculations of the gradient
of the previous layer to carry out the weight adjustments of the
next layer [18]. The specific configuration of an MLP network
must be determined from a series of factors such as the class of
problem to be treated by the network, arrangement of training
samples, initial values, and attributes so that the network can
be implemented efficiently.

A. Convolutional Neural Networks

CNNs commonly used for pattern recognition in images
have an MLP network architecture, but they stand out for
the presence of convolutional layers and often, pooling layers
observed in Fig. 3 in addition to the concepts already present
in MLP networks.

Fig. 3: Convolutional network representation.

Convolutional layers have the function of convoluting a
weight matrix sectioned across an image to extract relevant
information so that subsequent layers can make use of the
extracted information to recognize patterns in specific parts of
the image. Thus, a convolutional layer can identify intrinsic
characteristics of different parts of the image such as horizon-
tal and vertical lines, and specific angles, among other patterns
to be processed by the next layers [19], [20]. Pooling layers
accompany the convolution layers and their function is to
reduce the dimensions of the data provided by the convolution
layer, connecting the output of a group of neurons from the
previous layer into a single neuron from the pooling layer. The
pooling layer can have different aspects, neurons can extract
the maximum value or they can average the values received
from the group of the previous layer [19], [20].

III. FPGA

The FPGA has a structure with three main components,
LUT is responsible for implementing the logic functions, the
input and output blocks allow communication with peripherals
and the interconnectors that carry out the communication
between the blocks and some other components with more
specific functions such as the blocks random access memory
(BRAM) and digital signal processing blocks (DSP). All the

blocks are configurable so that the user when programming
the desired logic into the FPGA, the circuit forms the design
structure using the blocks which are essentially a vector
or array of combinational logic. Along with LUTs, other
resources such as D-flipflops, multiplexers, and transport logic,
carry, among others, to implement more complex functions
such as boolean functions and multipliers, then LUTs are now
called configurable logic blocks (CLB) illustrated in Fig. 4.

Fig. 4: CLB representation.

Fig. 5 represents a LUT with three inputs (A, B, and C), the
possible values of the LUT are stored in a register, because of
this, the LUT can be implemented as any function that has the
same number of inputs. Once configured the output values are
selected according to the inputs. Modern FPGAs have 6-input
LUTs and 64-bit registers.

Fig. 5: 3 input LUT representation.

By itself, a single LUT or CLB is very simple and incapable
of performing complex logic functions but connected in large
amounts are capable of performing complex functions even
if the individual power of each block is limited, there are
also FPGAs that have a carry chain which connects the LUTs
of CLBs with the LUTs of neighboring CLBs allowing the
creation of arithmetic functions as adders, with low-level logic
efficiently and quickly.

As the priority of FPGA circuits is efficiency in the use of
resources present on the board, the interconnection of the most
recent FPGAs has logic circuits to assist in the interconnection
and routing of the other blocks as seen in Fig. 6, such as
connection blocks (CB) that are responsible for connecting the
logic blocks with the interconnection rails with the possibility
of using any of the rails to assist in routing, and also the
switching blocks, which are configurable blocks that connect
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the rails themselves to provide more routing possibilities at
the time of implementation [21].

Fig. 6: FPGA structure representation.

BRAMs are memories that allow fast access to data and
have the ability to read and write data and are much more
efficient for data storage than LUT memory implementations,
it is also possible to access two memories in the same block
simultaneously, which allows the data preloading or data
writing and reading at the same instant. BRAMs can be
inferred by the synthesis tool or can be instantiated by the
user during design elaboration.

DSP blocks are blocks that allow multiplication operations
followed by result accumulation without the use of LUTs,
DSPs have a series of configurable functional blocks, the
DSP48E1 block present in FPGA Xilinx Series 7 features a 25-
by-18-bit two’s complement multiplier, a 48-bit accumulator,
a pre-adder, a block that can perform the addition, subtraction
or accumulating result of multiple data simultaneously, a unit
of logical operation with bits like AND, OR, NOT, NAND,
NOR, XOR, XNOR, overflow and underflow detectors and
configurable pipeline [17].

IV. METODOLOGY

For the implementation of a neural network in an FPGA,
it was necessary to generate and train the network externally,
for this, R and Python programming languages and the Keras
package were used for the elaboration of the neural network
and the export of the weights and bias of the trained network
with MNIST dataset [22], tests were performed with different
network configurations, such as number of layers, number of
neurons and activation function to test the implementation in
FPGA.

A. Network Weights Preparation

Once the network was trained, the values of the weights
and bias of each neuron were exported and manipulated using
Excel, with the use of formulas elaborated in the spreadsheets,

it was possible to easily process the data for later implemen-
tation in the FPGA. For an integer implementation, the weight
and bias values were multiplied by a multiple of 10, depending
on how accurate the decimal places would be, for example,
for three decimal places the values were multiplied by 1000,
then rounded using the formula “=round(‘Nº’,’Nº of decimal
places’)”. The result was a number with no decimal places, for
example, for a weight value of 0.6457, the value implemented
in FPGA would be 646.

For training and testing the elaborate network, the MNIST
dataset was used, which consists of handmade images of num-
bers from 0 to 9, widely used for training and testing image
processing systems, containing 60,000 images for training and
10,000 for testing, all images are in grayscale with dimensions
of 28x28 pixels, so the network input will be 784, a value for
each pixel [22].

B. FPGA Implementation

Tests were carried out with different types of networks in
the implementation, varying the number of layers, the number
of neurons in each layer, except for the output layer, the type
of activation function, the precision of decimal places, and
the differences between implementation with number integer
and with the library for numerical representation with fixed
point. For the evaluation of the implementation results, the
following parameters were observed: the response time, the
network accuracy, the use of board resources, and the energy
used for its operation.

1) Block structure: For the implementation in FPGA, using
VHDL programming language, different blocks were elab-
orated that together compose the neural network elaborated
previously.

Fig. 7: Representation of the network structure implemented
with data storage in LUT.

As illustrated in Fig. 7, the network has six basic blocks
in its structure, the TOP block that receives the external data,
in the case of this work, receives the values of the pixels
of the image to be identified and provides the final response
of the network according to the active output of the last
layer, the neuron block, illustrated in Fig. 8, is responsible for
weighting the inputs by synaptic weights and finally adding
the bias, the neurons layer block is responsible for receiving
the external input or data from the active output of the previous

ACADÊMICO CALL FOR PAPERS – SESSÃO 1 
Implementation of convolutional neural network in FPGA for image recognition 

139SET EXPO PROCEEDINGS – SETEP v. 8
© 2022 SET - Brazilian Society of Television Engineering / ISSN (Print): 2447-0481/ ISSN (Online): 2447-049X

Available at: https://www.set.org.br/setep  doi: 10.18580/setep.2022.44.6. Web Link: https://dx.doi.org/10.18580/setep.2022.44.6  



Fig. 8: Single neuron representation.

layer and distribute it to all neurons contained in it, after the
completion of the calculations performed by the neurons, the
layer sends the accumulated output to the block containing
the activation function stored in LUTs or in BRAM, after
activating the outputs of the last layer, the data is sent to the
block responsible for comparing the activated outputs of the
last one and verifying the value most likely to be the correct
answer.

The VHDL code was designed in such a way that it is
possible to modify the number of neurons and layers with
minimal configuration of the code itself, which facilitates
testing and adapting the code to different needs such as
greater accuracy, fewer used resources, faster response time,
etc. after any necessary modifications to the code, the Xilinx
Vivado HLS tool is used to synthesize the code for RTL and
implement it on the FPGA board.

2) Numerical Representation: As it is not possible to syn-
thesize real numbers in VHDL, tests were carried out with two
types of numerical representation. The first form of represen-
tation used as integers, with the arithmetic operations already
implemented in VHDL through the numeric std library, to
represent decimal places the input and weight values were
multiplied by multiples of ten, depending on the determined
precision. For example, for the representation of two decimal
places the values were multiplied by one hundred, and the
remainder was rounded, the values were then transferred to
the FPGA.

Fig. 9: Fixed point conversion.

The other form of numerical representation used for tests
was binary with fixed point, for that, a package was elaborated

and implemented that includes conversion from real number to
binary with fixed point, addition and multiplication so that it
was possible to implement the network using such numerical
representation. with ten bits for the decimal part, 14 bits for the
integer part, and one bit for the sign. The conversion was done
by an algorithm elaborated in Octave and is done in software
before the implementation, it consists of comparisons, between
the number you want to convert and each of the numbers that
are represented by the bits at a fixed point, as illustrated in
Fig. 9.

Fig. 10: Fixed point multiplication.

The implemented fixed-point number multiplication is rep-
resented in Fig. 10, the operation is relatively simple, perform-
ing a standard binary number multiplication and then dividing
between the vector that represents the integer number and the
vector that represents the decimal. In the example, it can be
seen that for multiplication between two numbers with four
bits in the decimal part, the result will have the eight least
significant bits as the decimal part.

3) Activation Functions: Tests were performed with differ-
ent activation functions to evaluate results, mainly observing
the accuracy and resource requirements of the FPGA used to
implement the activation function.

For better response times and simplicity of implementation,
the activation functions were calculated in software with a
programming language with a high level of Octave abstraction,
used primarily for mathematical computation, the values were
tabulated and stored in BRAM on the board.

Due to optimizations made by the Xilinx Vivado HLS
tool during synthesis and implementation, the algorithm can
conclude that the activation function can be implemented in
a combination of LUTs, multiplexers, and registers for better
use of the final design area.

The tests highlighted that implementing the activation func-
tion more efficiently is through LUTs elaborated outside the
FPGA and stored in RAM for quick access, saving DSP blocks
and processing time due to calculations of the implemented
model. The test implementation of the activation function
determined that the calculations necessary for the sigmoid
activation function would be performed in at least four clock
cycles for each value, however with the values in LUTs or
RAM only one cycle is needed for each value, decreasing
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response time without sacrificing accuracy, it is also possible
to utilize more resources on the board to calculate the response
of the activation function of all output values of a layer at the
same time.

4) Weight Storage: Two network models were developed
in terms of the way of storing the weights of the network,
one of the ways was implementation directly in LUTs of the
FPGA, once implemented the weights were stored as functions
in LUTs, registers, and multiplexers while the other way is
initial storage external value of the weights that are then stored
in the FPGA’s BRAM and during the calculations, the BRAM
supplies the weights to the neurons.

The process of storing the values in RAM requires in-
stantiating the blocks according to the number of neurons
so that there is one block per neuron, so there will be no
difference in the network response time, the process requires
an initialization period for the data to be provided by an
external source to RAM, however, it is only necessary to
perform the process once.

Fig. 11: Representation of a layer with data storage in BRAM.

Fig. 11 illustrates a layer when the method of implementing
weights in BRAM is used, the layer block distributes the
weights stored in RAM to the respective neurons according to
the input, so the layer block has a vector of BRAMs, and each
BRAM stores the weight value of each neuron in vector form,
so that during the weighting calculation the neuron receives
the weight corresponding to the input for each clock period.

5) FPGA Board Used in Tests: To perform the tests, the
FPGA Basys 3 Artix-7 board was used, which has 33,280
logic cells in 5200 slices, each containing four LUTs of six
inputs and eight flip-flops, 50 RAM blocks of 1,800 Kbits
each, 90 DSP48E1 slices. For the implementation, 100MHz
was used as clock time [17].

V. RESULTS
A. Parallelism

The initial implementation had total parallelism, with a
completely asynchronous network it was possible to perform
all the necessary calculations in parallel and obtain the result
in the picoseconds scale, however for a small network of ten
neurons in the hidden layer and ten in the layer of output were
used around 103800 LUTs and more than 10000 DSP slices
making the implementation unfeasible for the board available
for testing.

Based on this experience, it was decided to perform the
calculations synchronously, but many of the calculations are
still performed in parallel. The network was then modified to
perform the multiplication and accumulation calculations for
each neuron synchronously, so that each multiplication and
addition calculation for a neuron takes three clock cycles at
100MHz to perform, conserving board resources in exchange
for a longer response time, but this allows all neurons to
perform calculations in parallel so that the number of neurons
in the hidden layer minimally changes the total response time
of the layer, but increases the number of input values of the
next layer which increases the response time on the order
of approximately 20ns per neuron. With the reduction of
parallelism, it was possible to reduce the resources used by
the implemented network considerably.

B. Decimal Place Precision and Numeric Representation

The variation of the precision of decimal places allows both
savings in the use of resources on the board with the use
of less precision, while greater precision guarantees greater
accuracy of the network in exchange for a greater number
of resources used, both in the implementation with integers
and in the implementation with fixed point. tests were carried
out with a different number of decimal places to verify the
use of resources. Table I and II demonstrates the test results
for the implementation with two and three decimal points,
respectively, while Table III test results for the fixed point
implementation.

Varying decimal places and comparing with the final ac-
curacy of the network, it was determined that even using
more resources, the implementation with greater precision of
decimal places, both in the case of the use of integers, as in
the use of 25 bits at a fixed point, offered better results, since
better network accuracy is expected due to higher numerical
precision.

C. Network Design

The VHDL code was designed in such a way that it allows
flexibility both in the number of neurons and in the number of
intermediate layers and also in the number of input values in
the network, to be able to adapt the implementation according
to the need, without being limited for the MNIST dataset [22],
to only one model or the board used for the tests performed
in this work.

Tests were carried out with different numbers of layers
and neurons, which varies the number of resources used, the
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TABLE I: Integer implementation results with two decimal places of precision.

Integer – 2 decimal places 784x10x10 784x15x10 784x30x10 784x45x10 784x100x10 784x10x10x10
LUTs 6273 7704 11979 13960 33117 7811
DSP 10 25 40 55 100 30

BRAM(18KBits) 10 15 30 45 50 30
Registers 2023 2320 3240 4372 8377 2483
F7 MUX 323 546 973 2330 3229 682
F8 MUX 50 101 150 846 648 168

Original accuracy 92,75% 94,92% 96,70% 97,55% 97,88% 92,42%
Energy consumption 0,133W 0,184W 0,190W 0,197W * 0,211W

Response time 23.77µs 23.97µs 24.57 µs 25.17µs 27.37µs 47.85µs

TABLE II: Integer implementation results with three decimal places of precision.

Integer - 3 decimal places 784x10x10 784x15x10 784x30x10 784x45x10 784x100x10 784x10x10x10
LUTs 9655 11300 13518 17559 27854 14132
DSP 20 25 40 55 110 30

BRAM(18KBits) 0 15 30 45 50 20
Registers 2955 3026 3423 4460 9652 3358
F7 MUX 1357 1187 1333 1689 3152 1493
F8 MUX 220 228 249 263 740 304

Original accuracy 92,75% 94,92% 96,70% 97,55% 97,88% 92,42%
Energy consumption 0,259W 0,274W 0,307W 0,312W * 0,288W

Response time 23.77µs 23.97µs 24.57 µs 25.17µs 27.37µs 47.85µs

TABLE III: Implementation results with fixed-point binary.

Fixed point – 25 bits 784x10x10 784x15x10 784x30x10 784x45x10 784x100x10 784x10x10x10
LUTs 7863 8344 10573 12792 22570 9532
DSP 20 25 40 55 110 30

BRAM(18KBits) 10 15 40 45 50 20
Registers 2506 2729 3693 4888 8762 3058
F7 MUX 1146 917 1242 1799 3420 1493
F8 MUX 323 128 157 217 613 304

Original accuracy 0,9275 0,9492 0,967 0,9755 0,9788 0,9242
Energy consumption .179W .186W .26W .198W * .192W

Response time 23.77µs 23.97µs 24.57µs 25.17µs 27.37µs 47.85µs

accuracy of the model, and the response time of the network,
after different tests it was concluded that networks with more
than one layer did not only consumed more resources and more
time, as they did not guarantee better results in the accuracy
of the network in general, the network response time being
independent of the number of neurons, since all neurons in
a layer perform calculations in parallel, the network is more
effective, both in response time and accuracy, by increasing
the number of neurons in the hidden layer.

D. Activation Function

Tests were performed with different activation functions,
taking into account the accuracy of the elaborated network
and the consumption of resources on the board, as the output
layer needs the Sigmoid or SoftMax activation function, tests

were carried out with the two functions that presented the best
accuracy during training was Sigmoid and as the number of
resources consumed when implementing any of the functions
is similar, around 2000 LUTs or five BRAMs for implemen-
tation with integers with three places of precision and binary
with fixed point and around 1000 LUTs for precision with two
decimal places the most used features in the implementations,
the tests were carried out with Sigmoid, while the activation
function of the middle layer were carried out tests with dif-
ferent activation functions as mentioned above and hyperbolic
tangent and RELU, the tests carried out demonstrated that the
hyperbolic tangent activation function has lower accuracy and
would consume more board resources than the function RELU
which also had better accuracy compared to Sigmoid.
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Observing the results of test implementations, it can be
concluded that the number of neurons directly affects the
resources used by the network and the expected accuracy,
while the number of layers also affects the accuracy, consumes
more energy and more resources, and increases the response
time without a significant increase in.

Comparing the results of integers with representation using
binary with a fixed point we can see that there is significant
conservation of resources and less consumption of energy, the
only obstacle is the conversion of the input data to binary with
a fixed point since the algorithm runs externally, the data needs
treatment before processing, which would make the network
response time larger.

E. Comparison with CPU and GPU Acceleration

The response time in the different tests performed with
the hardware implementation was measured and compared
with the results of the software implementation using different
tools. For testing with CPU, a test was carried out with Intel
i7-6700K 4.00 GHz and 16 GB of RAM, it was also carried
out in a Kaggle virtual environment, and the results showed
an average response time of 20ms for each image, compared
with the response time of one-layer network with 45 neurons
implemented in 25.17µs FPGA, it is possible to notice that the
response time is considerably lower. It was also compared to
GPU acceleration on both an Nvidia GTX 980TI GPU with
6Gb of dedicated video RAM and a virtual environment so the
time reduction was not very significant, reducing the average
response time for individual images to 18ms.

VI. DISSCUSION

Regarding the network accuracy, it is possible to notice
that the consumption of resources is directly related to the
precision of decimal places of the network, which affects the
final accuracy of the implementation, with the calculated error
we can estimate the accuracy of the network according to the
expected results.

Taking the results of tests carried out with the network
implemented with a response time of 25.17us and considering
the average speed of a commercial aircraft as 300 km/h, we can
estimate that, with the network response time, the plane would
travel 0.0020975 meters or 2.0975 millimeters approximately,
between the input of the image and the decision making,
considering that the response time depends directly on the
number of inputs in the network, even if the number of inputs
was ten times greater, the plane would still travel less than
one meter between image input and decision making.

There is the possibility of using boards with a greater
number of resources to implement networks with a greater
number of inputs, neurons, and layers.

The greatest demand of convolutional networks is the
memory to store parameters and processing power to perform
arithmetic and logic operations the main components of FPGA
for neural networks are LUTs, BRAM, and DSPs.

VII. FINAL CONSIDERATIONS

Considering the results acquired through the tests of the
research carried out, it can be concluded that the implemen-
tation of neural networks for image recognition in FPGA has
enormous potential for reducing response time, in addition to
being economical in terms of energy consumed.

Initial comparisons with CPUs and GPUs show a significant
reduction in response time with the potential for optimizations
in the implementation to obtain even better results, in addition,
the FPGA implementation allows flexibility in updating the
network if necessary, complemented by the fact that the code
is itself flexible.

A. OPTIMIZATION PROPOSALS

As previously mentioned, there are several ways to imple-
ment neural networks for image recognition in FPGAs, being
important factors: the number of input values (pixels), the
number of dense layers, the number of neurons in each layer,
the representation number and its precision. All these factors
influence the complexity of the calculations performed, the
consumption of logical resources, memory and power on the
board, and the total time required for image processing.

There are a series of optimizations that are possible to
perform in the model elaborated, in future works, which could
further reduce the response time and improve the consumption
of resources by the model, some of these improvements are:

•

•

Develop a controller unit for the arithmetic operations
performed by the network, thus improving the use of
DSPs, using fewer LUTs, and enabling greater paral-
lelism of the calculations performed, limited only by the
amount of DSPs on the FPGA board.
Greater parallelization of the calculations performed,
since the calculations consume more time in image pro-
cessing, using techniques such as parallel reduction could
considerably reduce the response time in exchange for
greater consumption of resources and energy per image.

B. FUTURE WORKS

The focus of this work was to evaluate the response time
for calculations performed by a neural network developed for
image recognition, also considering the use of resources and
the energy consumed during tests performed with different
parameters, but due to the time required, in addition to limita-
tions of resources on the board used for tests for studies carried
out on neural networks, FPGA, VHDL, and implementation
techniques. It was not possible to implement different types of
layers such as the convolution layer and the max pooling layer
to test convolutional neural networks completely implemented
in FPGAs, considering that the code elaborated is flexible in
terms of the number of input values, number of layers and
amount of neurons per layer, it is possible to continue the
work in the future with the development of convolution and
max pooling layers and integrate them into the work already
done. Due to the difficulties of testing large amounts of images
to verify the accuracy of the network, it would be necessary
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to devise a way to send images quickly to the board to verify
the accuracy of the implementation.
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